期刊文献+

光子晶体光纤产生超连续谱相干特性的研究 被引量:1

Coherence Properties of Supercontinuum Based on Photonic Crystal Fiber
原文传递
导出
摘要 采用自适应分步傅里叶法求解包含自发拉曼散射噪声的广义非线性薛定谔方程,通过改变抽运脉冲的脉冲宽度和中心波长,利用单光子随机噪声模型,从光谱的频域演化相干度和相位角演化方面,理论研究了噪声对光子晶体光纤产生超连续谱的相干性影响。结果表明,要获得高相干度的超连续谱光源,孤子裂变的距离必须小于调制不稳定性距离,以抑制调制不稳定性对噪声的放大。因此,采用较短的抽运脉冲、抽运脉冲在正常色散区或在反常色散区距离零色散波长较远,二阶色散系数绝对值较大,可以获得高相干度的超连续谱光源。 Based on single-photon noise model and generalized nonlinear Schrodinger equation including spontaneous Raman scattering noise, the coherence properties of supercontinuum under various pulse widths of the pump pulse and input pulse wavelength are theoretically analyzed from the coherence and phase angle evolution of spectra in the frequency domain. The results show that, in order to obtain a high degree of coherence supercontinuum light source and suppress the modulation instability to noise amplification, the soliton fission of distance must be smaller than the modulation instabilities distance. Using shorter pump pulse, the pump pulses in the normal dispersion region or in the region of anomalous dispersion far from zero-dispersion wavelength, the absolute value of the second-order dispersion coefficient is added to obtain highly coherent supercontinuum.
作者 詹仪 王丽
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第F06期252-257,共6页 Acta Optica Sinica
基金 国家自然科学基金(60978028)、北京市教育委员会项目(Km200910005019)、北京市教委科研计划重点项目(Kz201110005010)、山东省自然科学基金(R2009AL013)和山东省教育厅科技计划(J08L114)资助课题.
关键词 非线性光学 相干特性 自适应分步傅里叶法 调制不稳定性 nonlinear optics coherence properties adaptive step Fourier method modulation instability
  • 相关文献

参考文献24

  • 1Y. Lim, Y. Jiang, Y. Huang et al.. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 μm[J]. Opt. Lett., 2005, 30(10): 1171-1173.
  • 2W. Drexler, U. Morgner, F. X. Kartner et al.. In vivo ultrahigh-resolution optical coherence tomography[J]. Opt. Lett., 1999, 24(17): 1221-1223.
  • 3F. Futami, K. Kikuchi. Low-noise multi-wavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber[J]. IEEE Photon. Technol. Lett., 2001, 13(2): 73-75.
  • 4Th. Udem, R. Holzwarth, T. W. Hansch. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237.
  • 5H. Kano, H. Hamaguchi. Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy[J]. Opt. Lett., 2003, 28(23): 2360-2362.
  • 6H. N. Paulsen, K. M. Hilligsoe, J. Thogersen et al.. Coherent anti-tokes Raman scattering microscopy with a photoriic crystal fiber based light source[J]. Opt. Lett., 2003, 28(23): 1123-1125.
  • 7J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber[J]. Rev. Mod. Phys., 2006, 78(4): 1135-1184.
  • 8K. Mori, H. Takara, S. Kawanishi et al.. Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fiber with convex dispersion profile[J]. Electron. Lett., 1997, 33(21): 1806-1808.
  • 9D. V. Skryabin, F. Luan, J. C. Knight et al.. Soliton self-frequency shift cancellation in photonic crystal fibers[J]. Science, 2003, 301(5640): 1705-1708.
  • 10J. C. Travers, S. V. Popov, J. R. Taylor et al.. Extended blue supercontinuum generation in cascaded holey fibers[J]. Opt. Lett., 2005, 30(23): 3132-3134.

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部