期刊文献+

利用非线性脉冲预整形实现脉冲快速自相似放大 被引量:2

Fast self-similar amplification through passive nonlinear pulse pre-shaping
原文传递
导出
摘要 报道了一种通过预先对信号光脉冲非线性整形,进而在光纤放大器中实现自相似演化的方法.利用透射光栅对和普通单模光纤组成被动脉冲整形装置,预先优化脉冲的时域宽度和光谱质量,使脉冲在光纤放大器中快速演化到自相似子.研究中首先通过数值模拟对比,说明了非线性整形对脉冲实现快速自相似放大的关键作用,提高了放大器输出脉冲质量,减小了去啁啾脉冲宽度.实验中,通过优化非线性整形输出,在2.2m长的掺Yb3+光纤中,在一定抽运功率范围内均实现了脉冲自相似放大,去啁啾后得到脉冲宽度60fs的变换极限脉冲输出.这种非线性脉冲预整形方法有效减小了自相似演化所需光纤长度,同时降低了自相似放大对种子源质量的要求,首次将全正色散光纤锁模激光器成功用于自相似放大,促进了当前自相似放大系统的全光纤化. A nonlinear pre-shaper which optimizes initial pulses for self-similar evolution in a following short fiber amplifier is demon- strated. It consists of a pair of transmission gratings and a segment of single mode fiber, by which pulses are shaped temporally and spectrally before amplification. To confirm the benefit of nonlinear pre-shaping for the self-similar evolution, pulse amplifications with and without the nonlinear pre-shaper are simulated. From comparison, pulses optimized by nonlinear pre-shaper show a shorter pulse duration, less pedestal and broader spectrum after amplification and compensation. With this optimization, the self-similar amplification can be realized in a 2.2-meter Yb3+ -doped fiber in a large range of pump power, generating 60 fs transform-limited pulses after compression. This nonlinear pre-shaping method can efficiently shorten the fiber length and release the seed quality required for self-similar amplification. An all-normal dispersion mode-locked fiber laser is employed as the seed of a self-similar amplifier for the first time, thus facilitating an all-fiber system.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第14期85-90,共6页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2011CB808101 2010CB327604) 国家自然科学基金(批准号:61227010 61008015 61078028) 教育部高等学校博士学科点专项科研基金(批准号:20100032120057)资助的课题~~
关键词 非线性整形 光纤放大器 自相似放大 飞秒激光 nonlinear pulse shaping fiber amplifier self-similar amplification femtosecond laser
  • 相关文献

参考文献16

  • 1Limpert J, Rser F, Schreiber T, Tiinnermann A 2006 IEEE f. Set. Top. Quantum Electron. 12 233.
  • 2宋有建 胡明列 刘博文 柴路 王清月.物理学报,2008,57:6425-6425.
  • 3刘博文,胡明列,宋有建,柴路,王清月.亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究[J].物理学报,2008,57(11):6921-6925. 被引量:13
  • 4Deng Y, Chien C, Fidric G B, Kafka D J 2009 Opt. Lett. 343469.
  • 5Shah L, Liu Z, Hartl I, Imeshev G, Cho G, Fermann M 2005 Opt. Ex?press 134717.
  • 6Zhou S, Kuznetsova L, Chong A, Wise F 2005 Opt. Express 134869.
  • 7Xie C, Liu B, Niu H, Song Y, Li Y, Hu M, Zhang Y, Shen W, Liu X, Wang C 2011 Opt. Lett. 364149.
  • 8Fermann E M, Kruglov I Y, Thomsen C B, Dudley M J, Harvey D J 2000 Phys. Rev. Lett. 846010.
  • 9Kruglov I Y, Peacock C A, Harvey D J, Dudley M J 2002 f. Opt. Soc. Am. B 19461.
  • 10Chang Q G, Galvanauskas A, Winful G H, Norris B T 2004 Opt. Lett. 292647.

二级参考文献16

  • 1宋有建 胡明列 刘博文 柴路 王清月.物理学报,2008,57:6425-6425.
  • 2Schreiber T, Roser F, Schmidt O, Limpert J, lliew R, Lederer F, Petersson A, Jacobsen C, Hansen K P, Broeng J, TUmmerroann A 2005 Opt. Express 13 7621
  • 3Agrawal P G 2001 Nonlinear Fiber Optics (Academic)
  • 4Song Y J, Hu M L, Wang C L, Tian Z, Xing Q R, Chai L, Wang C Y 2008 submitted to IEEE Photon. Tech. Lett. 20 1088
  • 5Roser F, Schimpf D N, Schmidt O, Ortac B, Rademaker K, Limpert J, Tumrnermann A 2007 Opt. Lett. 32 2230
  • 6Fermann M E 2000 Phys. Rev. Lett. 84 6010
  • 7Zhou S, Kuznetsova L, Chong A, Wise F W 2005 Opt. Express 13 4869
  • 8Fermann M E, Galvanauskas A, Sucha G 2002 Ultrafast Lasers: Technonlogy and Applications (New York: Marcel Dekker)
  • 9Limpert J, Roser F, Schreiber T, T nnermann A 2006 IEEE J. Sel. Topics Quantum Electron. 12 233
  • 10Strickland D, Moumu G 1985 Opt. Commun. 56 219

共引文献17

同被引文献39

  • 1楼祺洪,周军,朱健强,王之江.高功率光纤激光器研究进展[J].红外与激光工程,2006,35(2):135-138. 被引量:69
  • 2郑颖辉,熊辉,彭滟,徐晗,曾志男,杨旋,陈晓伟,李儒新,曾和平,徐至展.7 fs超快强激光驱动Ar原子产生支持单个阿秒脉冲的高次谐波连续谱[J].光学学报,2006,26(9):1439-1440. 被引量:6
  • 3Christov I P, Murnane M M, Kapteyn H C. High-harmonic generation of attosecond pulses in the“single-cycle”regime[J]. Physical Review Letters, 1997 , 78(7): 1251-1254.
  • 4席鹏, 周传清, 封晓瑞, 等. 10 fs脉冲在多光子激发生物成像中的应用[J]. 光学学报, 2009, 29(s1): 46-49.
  • 5Horton N G, Wang K, Kobat D, et al.. In vivo three-photon microscopy of subcortical structures within an intact mouse brain[J]. Nature Photonics, 2013, 7(3): 205-209.
  • 6Polli D, Antognazza M R, Brida D, et al.. Broadband pump-probe spectroscopy with sub- 10-fs resolution for probing ultrafast internal conversion and coherent phonons in carotenoids[J]. Chemical Physics, 2008, 350(1-3): 45-55.
  • 7Chen L M, Liu F, Wang W M, et al.. Intense high-contrast femtosecond K-shell X-ray source from laser-driven Ar clusters[J]. Physical Review Letters, 2010, 104(21): 215004.
  • 8Fork R L, Cruz C H, Becker P C, et al.. Compression of optical pulses to six femtoseconds by using cubic phase compensation[J]. Optics Letters, 1987, 12(7): 483-485.
  • 9Brida D, Cirmi G, Manzoni C, et al.. Sub-two-cycle light pulses at 1.6 mm from an optical parametric amplifier[J]. Optics Letters, 2008, 33(7): 741-743.
  • 10Demmler S, Rothhardt J, Heidt A M, et al.. Generation of high quality, 1.3 cycle pulses by active phase control of an octave spanning supercontinuum[J]. Optics Express, 2011, 19(21): 20151-20158.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部