期刊文献+

脉冲光纤激光修锐青铜金刚石砂轮等离子体特性研究 被引量:4

Plasma characterization studies of laser dressing for bronze-bonded diamond wheel by a pulsed fiber laser
原文传递
导出
摘要 采用光栅光谱仪对脉冲光纤激光修锐青铜金刚石砂轮过程中产生的等离子体空间分辨发射光谱进行了测量.研究了500—600nm波段范围内的等离子体空间发射光谱强度随激光平均功率和脉冲重复频率的变化情况.结果表明:等离子体辐射光谱强度在其径向膨胀方向上距离砂轮表面约2.4mm处达到最大值.在局部热力学平衡假设条件下,根据等离子体中六条铜原子谱线的相对强度,利用Boltzmann图法,计算得到在不同激光功率和重复频率条件下的等离子体电子温度沿砂轮径向方向的分布规律.实验结果表明:在激光修锐青铜金刚石砂轮过程中,距离砂轮表面约3mm处等离子体电子温度出现峰值,其温度最高可达4380K,且等离子体电子温度随着激光参数和空间位置的改变呈现出不同的演变规律. In this paper, we present the optical emission studies of the spatial evolution of plasma during pulsed fiber laser dressing of bronzebonded diamond grinding wheel and especially investigate the plasma light emission, which is measured through a high sensible optical spectrometer. Space-resolved spectra in a wavelength range of 500–600 nm are measured at different laser average powers and pulse repetition frequencies, and the intensity of spectral lines achieves a maximum intensity at about 2.4 mm away from the surface of the grinding wheel. The electron temperature is determined by employing the Boltzmann plot method under the assumption of local thermodynamic equilibrium using six Cu (I) lines, and the highest electronic temperature is calculated to be 4380 K at about 3 mm away from the surface of wheel. Finally the effect of the laser parameters on the electron temperature of the plasma is studied, and the results show that there are different variation laws in the electron temperature of the plasma with laser average power and pulse repetition frequency.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第14期182-188,共7页 Acta Physica Sinica
基金 国家科技重大专项(批准号:2012ZX04003101)资助的课题~~
关键词 脉冲光纤激光 等离子体发射光谱 激光修锐 电子温度 pulsed fiber laser plasma emission spectroscopy laser dressing electron temperature
  • 相关文献

参考文献16

  • 1Babu N R, Radhakrishnan V 1989 J. Manul Sci. E-T. Asme. 111244.
  • 2Babu N R, Radhakrishnan V 1989 J. Manul Sci. E-T. Asme. 111253.
  • 3Dold C, Transchel R, Rabiey M, Langenstein P, Jaeger C, Pude F, Kuster F, Wegener K 2011 Cirp Ann-Manul Techn. 60 363.
  • 4Chen G Y, Mei L F, Zhang B, Yu C R, Shun K J 2010 Opt. Laser Eng. 48295.
  • 5Rabiey M, Walter C, Kuster F, Stirnirnann J, Pude F, Wegener K 2012 Stroj. Vestn-J. Mech. E 58 462.
  • 6Noll R 2012 Laser-Induced Breakdown Spectroscopy Fundamentals and Applications (1 st Ed.) (New York: Springer-Verlag) p 170.
  • 7Shaikh N M, Hafeez S, Rashid B, Mahmood S, Baig M A 2006 J. Phys. D: Appl. Phys. 39 1384.
  • 8刘月华,陈明,刘向东,崔清强,赵明文2013物理学报62025203.
  • 9DrogoffB L, MargotJ, Chaker M, Sabsabi M, Barthelemy 0, Johnston T W, Laville S, Vidal F, Kaenel V 2001 Spectrochim. Acta B 56987.
  • 10Shaikh N M, Hafeez S, Kalyar M A, Ali R, Baig M A 2008 J. Appl. Phys. 104 103108.

二级参考文献5

共引文献5

同被引文献17

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部