期刊文献+

Effect of Annealing on the Microwave-absorption Properties of Ni/Al_2O_3 Nanocomposites 被引量:1

Effect of Annealing on the Microwave-absorption Properties of Ni/Al_2O_3 Nanocomposites
原文传递
导出
摘要 Ni/Al2O3 nanocomposites were prepared by the mechanochemical synthesis method. The annealing process enlarges the grain size of both the metal Ni and insulating Al2O3 in the as-milled nanocomposite and leads to an increase of the saturation magnetization and a decrease of the surface anisotropy. An optimal reflection loss (RL) of -23 dB is obtained in the as-milled nanocomposite at 17.8 GHz for an absorber thickness of 6.6 mm. The annealed sample exhibits a RL exceeding -20 dB in the whole Ku-band for an absorber thickness of 6.6-9.7 mm with an optimal RL of -54.7 dB at 13.2 GHz for a layer thickness of 9.3 mm. The excellent microwave-absorption properties are a consequence of a proper match of the dielectric and magnetic losses. Ni/Al2O3 nanocomposites were prepared by the mechanochemical synthesis method. The annealing process enlarges the grain size of both the metal Ni and insulating Al2O3 in the as-milled nanocomposite and leads to an increase of the saturation magnetization and a decrease of the surface anisotropy. An optimal reflection loss (RL) of -23 dB is obtained in the as-milled nanocomposite at 17.8 GHz for an absorber thickness of 6.6 mm. The annealed sample exhibits a RL exceeding -20 dB in the whole Ku-band for an absorber thickness of 6.6-9.7 mm with an optimal RL of -54.7 dB at 13.2 GHz for a layer thickness of 9.3 mm. The excellent microwave-absorption properties are a consequence of a proper match of the dielectric and magnetic losses.
机构地区 School of Science
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第4期385-389,共5页 金属学报(英文版)
基金 financially supported by the Dr.Research Start-up Fund of Shenyang Ligong University(No.2008,(20))
关键词 MICROWAVE-ABSORPTION Reflection loss MICROSTRUCTURE Microwave-absorption Reflection loss Microstructure
  • 相关文献

参考文献25

  • 1V.B. Bregar, D. Lisjak, A. Znidarsi and M. Drofenik, IEEE Trans. Magn. 40 (2004) 1679.
  • 2X.L. Shi, M.S. Cao, J. Yuan and X.Y. Fang, Appl, Phys. Lett. 95 (2009) 163108.
  • 3P. Xu, X.J. Han, J.J. Jiang, X.H. Wang, X.D. Li and A.H. Wen, J. Phys. Chem. C 111 (2007) 12603.
  • 4M.S. Pinho, M.L. Gregori, R.C. Rnunes and B.G. Soares, Eur. Polym. J. 38 (2002) 2321.
  • 5T.D. Zhou, L.J. Deng and D.F. Liang, Acta Metall. Sin. (Eng!. Lett.) 21 (2008) 191.
  • 6J.L. Snoek, Physica (Amsterdam) 14 (1948) 207.
  • 7X.F. Zhang, X.L. Dong, H. Huang, Y.Y. Liu, W.N. Wang, X.G. Zhu, B. Lv and J.P. Lei, Appl. Phys. Lett. 89 (2006) 053115.
  • 8Z. Han, D. Li, H. Wang, X.G. Liu, J. Li, D.Y. Geng and Z.D. Zhang, Appl, Phys. Lett. 95 (2009) 023114.
  • 9X. Ni, J. Ma, J.G. Li, D.M. Jiao, J.J. Huang and X.D. Zhang, J. Alloys Compd. 468 (2009) 386.
  • 10Q. Zhang, C.F. Li, Y.N. Chen, Z. Han, H. Wang, Z.J. Wang, D.Y. Geng, W. Liu and Z.D. Zhang, Appl. Phys. Lett. 97 (2010) 133115.

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部