期刊文献+

Phase Homogeneity and Crystal Structure of Sb_(88)Te_(12) Synthesized by Melt-quench Method

Phase Homogeneity and Crystal Structure of Sb_(88)Te_(12) Synthesized by Melt-quench Method
原文传递
导出
摘要 Phase homogeneity and crystal structure of SbsaTe12 alloy synthesized by melt-quench method have been analyzed using X-ray diffraction (XRD) and Raman spectroscopy. Rietveld refinement of crystal structure of Sb8sTe12 has revealed the formation of SbsTe3 and Sb phases respectively with 11R and A7 structures (space group is R3m). Phase fractions of the phases SbsTe3 and Sb have been determined to be 44.44% and 55.56% respectively. Raman spectrum of SbssTe12 has showed a highest intensity peak at 156 cm-1 and another peak at 151.1 cm-1, which correspond to Alg modes of SbsTe3 and element Sb, respectively. Analysis of Raman spectrum has substantiated the results obtained from structure refinement regarding the presence of two different phases. Phase homogeneity and crystal structure of SbsaTe12 alloy synthesized by melt-quench method have been analyzed using X-ray diffraction (XRD) and Raman spectroscopy. Rietveld refinement of crystal structure of Sb8sTe12 has revealed the formation of SbsTe3 and Sb phases respectively with 11R and A7 structures (space group is R3m). Phase fractions of the phases SbsTe3 and Sb have been determined to be 44.44% and 55.56% respectively. Raman spectrum of SbssTe12 has showed a highest intensity peak at 156 cm-1 and another peak at 151.1 cm-1, which correspond to Alg modes of SbsTe3 and element Sb, respectively. Analysis of Raman spectrum has substantiated the results obtained from structure refinement regarding the presence of two different phases.
作者 C.Rangasami
机构地区 Department of Physics
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2013年第4期441-446,共6页 金属学报(英文版)
关键词 SbssTe12 alloy Melt-quench method XRD Rietveld refinement Raman spectroscopy Multiphase formation SbssTe12 alloy Melt-quench method XRD Rietveld refinement Raman spectroscopy Multiphase formation
  • 相关文献

参考文献27

  • 1M. Wuttig and N. Yamada, Nature Mater. 6 (2007) 824.
  • 2W. Welnic and M. Wuttig, Mater. Today 11 (2008) 20.
  • 3S. Raoux and M. Wuttig, Phase change materials: Science and Application, Springer, New York, 2009, p.1.
  • 4T. Siegrist, P. Merkelbach and M. Wuttig, Annu. Rev. Condens. Matter Phys. 3 (2012) 111.
  • 5M.L. Lee, L.P. Shi, Y.T. Tian, C.L. Gan and X.S. Miao, Phys. Status Solidi A 205 (2008) 340.
  • 6S. Raoux, R.M. Shelby, J. Jordan-Sweet, B. Munoz, M. Salinga, Y.C. Chen, Y.H. Shin, E.K Lai and M.H. Lee, Microelectron. Eng. 85 (2008) 2330.
  • 7T. Matsunaga, J. Akola, S. Kohara,T. Honma, K Kobayashi, E. Ikenaga, R.O. Jones, N. Yamada, M. Takata and R. Kojima, www.epcos.org/library/papers/pdL2011/0ralPapers/S4-05.pdf.
  • 8S.R. Ovshinsky, Phys. Rev. Lett. 21 (1968) 1450.
  • 9J. Feinleib, J. deNeufville, S.C. Moss and S.R. Ovshinsky, Appl. Phys. Lett. 18 (1971) 254.
  • 10N. Yamada, E. Ohno, N. Akahira, K Nishiuchi, K Nagata and M. Takao, Jpn. J. Appl. Phys. 26 (1987) 61.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部