摘要
The nonlinear vibration of a cantilever cylindrical shell under a concentrated har- monic excitation moving in a concentric circular path is proposed. Nonlinearities due to large- amplitude shell motion are considered, with account taken of the effect of viscous structure damp- ing. The system is discretized by Galerkin's method. The method of averaging is developed to study the nonlinear traveling wave responses of the multi-degrees-of-freedom system. The bifur- cation phenomenon of the model is investigated by means of the averaged system in detail. The results reveal the change process and nonlinear dynamic characteristics of the periodic solutions of averaged equations.
The nonlinear vibration of a cantilever cylindrical shell under a concentrated har- monic excitation moving in a concentric circular path is proposed. Nonlinearities due to large- amplitude shell motion are considered, with account taken of the effect of viscous structure damp- ing. The system is discretized by Galerkin's method. The method of averaging is developed to study the nonlinear traveling wave responses of the multi-degrees-of-freedom system. The bifur- cation phenomenon of the model is investigated by means of the averaged system in detail. The results reveal the change process and nonlinear dynamic characteristics of the periodic solutions of averaged equations.
基金
Project supported by National Natural Science Foundation of China (No. 11172063)