期刊文献+

一种多智能体混合蛙跳算法 被引量:4

A Multi-agent Shuffled Frog Leaping Algorithm
下载PDF
导出
摘要 提出一种多智能体混合蛙跳算法。将智能体固定在智能体网格上,每个智能体通过与其邻居的竞争与合作,结合混合蛙跳算法的进化机制,不断感知局部环境,并逐渐影响整个智能体网格,以提高自身对环境的适应能力。为更好地适应环境,智能体也可以利用自身的知识进行自学习。仿真实验结果表明,该算法能有效地维持种群的多样性,提高优化精度,同时抑制早熟现象,在高维函数优化方面具有较高的优化性能。 This paper proposes a Multi-agent Shuffled Frog Leaping Algorithm(MSFLA) by introducing the multi-agent system to the Shuffled Frog Leaping Algorithm(SFLA). This algorithm fixes the agent on grid, with the competition and cooperation with its neighbors, and combining the evolution mechanism of the SFLA. Each agent unceasingly senses local environment, and gradually affects the whole agent grid, so that it enhances its adaptiveness to the environment. The agent also makes self-study by using its knowledge to enhance its adaptiveness to the environment. By the test of high dimension benchmark functions, the results illustrate this algorithm this algorithm can effectively maintain the diversity of the population, increase the precision of optimization, simultaneously, efficiently restrain the prematurity, and has higher optimization performance in the field of high dimension functions optimization.
出处 《计算机工程》 CAS CSCD 2013年第7期265-269,287,共6页 Computer Engineering
基金 国家自然科学基金资助项目(61063028) 甘肃省科技支撑计划基金资助项目(1011NKCA058)
关键词 多智能体 混合蛙跳算法 竞争 自学习 能量 多样性 优化性能 multi-agent Shuffled Frog Leaping Algorithm(SFLA) competition self-study energy diversity optimization performance
  • 相关文献

参考文献15

  • 1Eusuff M, Lansey K E. Optimization of Water Distribution Network Design Using the Shuffled Frog Leaping Algorithm[J]. Water Resources Planning and Management, 2003, 129(3): 210-225.
  • 2Emad E, Tarek H, Donald G. A Modified Shuffled Frog- leaping Optimization Algorithm: Applications to Project Management[J]. Structure and Infrastructure Engineering, 2007, 3(1): 53-60.
  • 3李英海,周建中,杨俊杰,刘力.一种基于阈值选择策略的改进混合蛙跳算法[J].计算机工程与应用,2007,43(35):19-21. 被引量:80
  • 4Zhang Xuncai, Hu Xuemei, Cui Guangzhao, et al. An Improved Shuffled Frog Leaping Algorithm with Cognitive Behavior[C]//Proc. of the 7th World Congress on Intelligent Control and Automation. Piscataway, USA: IEEE Press, 2008: 6197-6202.
  • 5Bhaduri A. A Clonal Selection Based Shuffled Frog Leaping Algorithm[C]//Proc. of IEEE International Advance Computing Conference. Piscataway, USA: IEEE Computer Society, 2009: 125-130.
  • 6代永强,王联国.带记忆功能的混合蛙跳算法[J].计算机工程与设计,2011,32(9):3170-3173. 被引量:15
  • 7赵鹏军,刘三阳.求解复杂函数优化问题的混合蛙跳算法[J].计算机应用研究,2009,26(7):2435-2437. 被引量:71
  • 8Yue Mei, Hu Tao, Guo Baoping, et al. The Research Base on Memetic Meta-heuristic Shuffled Frog-leaping Algorithm[C]// Proc. of the 2nd Conference on Power Electronics and Intelligent Transportation System. Piscataway, USA: IEEE Computer Society, 2009: 117-120.
  • 9Yue Mei, Hu Tao, Guo Baoping, et al. The Research Base on Memetic Meta-heuristic Shuffled Frog-leaping Algorithm[C]// Proc. of the 2nd Conference on Power Electronics and Intelligent Transportation System. Piscataway, USA: IEEE Computer Society, 2009: 117-120..
  • 10肖鲲,黄挚雄.多智能体粒子群算法在配电网络重构中的应用[J].计算机工程与应用,2010,46(8):221-224. 被引量:5

二级参考文献57

共引文献160

同被引文献35

引证文献4

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部