期刊文献+

基于字典学习正则化的图像去噪 被引量:1

Image Denoising Based on Dictionary Learning Regularization
下载PDF
导出
摘要 稀疏表示因其具有稀疏性、特征保持性等一些特点而被广泛应用于图像处理等领域,为解决图像处理中的去噪问题,提出一种基于图像特征稀疏表示的贝叶斯去噪模型。利用K-means和主成分分析方法计算已分割图像块对应字典的矩阵系数,采用正则化约束条件,迭代计算获取的图像字典与原始图像字典之间的差距,优化噪声图片稀疏特征表示的字典,直到达到优化条件。实验结果表明,与传统的离散余弦变换去噪模型相比,该模型的峰值信噪比较高,随着噪声的不断提高,与噪声图像峰值信噪比的差距也越来越大,且图像失真较少。 For the sparse characteristic and maintaining features characteristic, the sparse representation is widely used in image processing. To solve the problem of image denoising in the area of image processing, this paper proposes a new Bayesian denoising model based on image feature sparse representation. The model uses the K-means and Principal Component Analysis(PCA) method to obtain the coefficients of dictionary for sparse representation solutions of image patches. The coefficients solutions are used to train the dictionary with regularized optimization. The alternating minimizations are kept between above two steps untit the difference between the image dictionary and the source image dictionary satisfied a convergence criterion. It restores the denoising image under the MAP model with that dictionary. Experimental results show that the higher Peak Signal to Noise Ratio(PSNR) value than the source noised images with the increase of imposed noise into clean images, comparing to the initialization with Discrete Cosine Transform(DCT).
出处 《计算机工程》 CAS CSCD 2013年第7期270-273,共4页 Computer Engineering
基金 国家自然科学基金资助项目(60903104) 中央高校基本科研业务费专项基金资助项目(kfjj20110241)
关键词 图像去噪 字典学习 贝叶斯模型 稀疏表示 正则化 高斯噪声 image denoising dictionary learning Bayesian model sparse representation regularization Gauss noise
  • 相关文献

参考文献4

二级参考文献51

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2杨朝霞,逯峰,田芊.小波构造变正则参数变分模型在带噪图像恢复中的应用[J].计算机辅助设计与图形学学报,2004,16(12):1645-1650. 被引量:5
  • 3杨晓慧,焦李成,李伟.基于第二代bandelets的图像去噪[J].电子学报,2006,34(11):2063-2067. 被引量:14
  • 4D L Donoho. De-noising by soft thresholding[J]. IEEE Trans on Information Theory, 1995,41 (3) : 613 - 627.
  • 5J Portilla, V Strela, et al. Image de-noising using scale mixtures of Gaussians in the wavelet domain[ J]. IEEE Trans on Image Processing, 2003,12(11) : 1338 - 1351.
  • 6M Elad, M Aharon. Image denoising via sparse and redundant representation over learned dictionaries[J]. IEEE Trans on Image Processing, 2006,15 (12) : 3736 - 3745.
  • 7S G Mallat, Z Zhang. Matching pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing, 1993, 41 (12) :3397 - 3415.
  • 8J Nocedal, S J Wright. Numerical Optimization[M ]. New York: Springer Verlag,2006.
  • 9J Barzilai, J Borwein. Two-point step size gradient methods[J].IMA Journal of Numerical Analysis, 1988, 8 ( 1 ) : 141 - 148.
  • 10Mairal J,Elad M,Sapiro G.Sparse representation for colorimage restoration[J].IEEE Transactions on ImageProcessing,2008,17(1):53-69.

共引文献73

同被引文献17

  • 1Buads A,Coll B,Morel J M. A Non-local Algorithm for Image Denoising [ C ]//Proceedings of IEEE CVPR' 05. Washington D. C. , USA : IEEE Press ,2005:60-65.
  • 2MairalI, Bach F, Ponce J, et al. Non-local Sparse Models for Image Restoration [ C ~//Proceedings of IEEE ICCV' 09. Washington D. C., USA: IEEE Computer Society, 2009 : 2272-2279.
  • 3Dabov K,Foi A,Egiazarian K. Image Denoising by Sparse 3D Transform-domain Collaborative Filtering~Jl. IEEE Transactions on Image Processing,2007,16(8):2080-2095.
  • 4Burger H C ,Schuler C I, Harmeling S. Image Denoising: Can Plain Neural Networks Compete with BM3D [ C J// Proceedings of IEEE CVPR' 12. Washington D. C. , USA: IEEE Computer Society,2012:2392-2399.
  • 5Dong Weisheng, Zhang Lei, Li Xin, et al. Nonlocally Centralized Sparse Representation for Image Restora- tionl J J. IEEE Transactions on Image Processing,2013, 22(4) : 1620-1630.
  • 6Romano Y,Protter M,Elad M. Single Image Interpolation via Adaptive Nonlocal Sparsity-based Modeling [ J 1. IEEE Transactions on Image Processing,2014,23(7):3085-3098.
  • 7Romano Y,Elad M. Improving K-SVD Denoise by Post- processing Its Method-noise ~ C ~//Proceedings of IEEE ICIP' 13. Washington D. C., USA: IEEE ComputerRomano Y,Elad M. Improving K-SVD Denoise by Post- processing Its Method-noise ~ C ~//Proceedings of IEEE ICIP' 13. Washington D. C., USA: IEEE ComputerSociety,2013:435-439.
  • 8Elad M. Sparse and Redundant Representation Modeling What Next [ J ]. IEEE Signal Processing Letters ,2012,19 ( 12 ) :922-928.
  • 9Elad M. Sparse and Redundant Representations: From Theory to Applications in Signal and Image Process- ing [ M ]. Berlin, Germany : Springer,2010.
  • 10Patel V M, Chellappa R. Sparse Representations and Compressive Sensing for Imaging and Vision [ M ]. Berlin, Germany : Springer, 2013.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部