摘要
通过分析研究变形温度、应变速率及变形程度参数对TC4-DT钛合金高温变形行为的影响,建立了一种基于自适应模糊神经网络的TC4-DT钛合金高温变形本构关系预测模型。高温变形热模拟压缩试验的变形温度为750~1150℃,应变率为O.001~10s^(-1),试样高度压缩率为50%。本研究中建立的网络模型集成了模糊推理系统误差反向传播(BP)神经网络的学习算法。结果表明,该模型的预测值与实验结果比较吻合,最大相对误差小于6%。本研究证明模糊神经网络是一种优化TC4-DT钛合金本构关系模型和优化变形工艺参数的有效、实用方法。
By analyzing the high temperature TC4-DT titanium alloys' deformation temperature, strain rate and deformation degree with the parameters of the experimental data flow stress, an adaptive fuzzy-neural network model has been established to predict flow stress data to model the high temperature deformation constitutive relationship of TC4-DT titanium alloy. The experimental results were obtained at deformation temperature of 750-1150 ℃, strain rates of 0.001- 10 s1, and height reduction of 50%. The network integrates the fuzzy inference system with a back-propagation (BP) learning algorithm of neural network. Results show that the predicated values are in satisfactory agreement with the experimental results and the maximum relative error is less than 6%. It proves that the fuzzy-neural network is a very effective and practical method to achieve more optimized TC4 - DT titanium alloy constitutive relation model and optimize deformation process parameters.
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2013年第7期1347-1351,共5页
Rare Metal Materials and Engineering
基金
National Natural Science Foundation of China (50824001)