期刊文献+

基于模糊神经网络的TC4-DT钛合金高温变形本构关系模型(英文) 被引量:2

Modeling the High Temperature Deformation Constitutive Relationship of TC4-DT Alloy Based on Fuzzy-neural Network
原文传递
导出
摘要 通过分析研究变形温度、应变速率及变形程度参数对TC4-DT钛合金高温变形行为的影响,建立了一种基于自适应模糊神经网络的TC4-DT钛合金高温变形本构关系预测模型。高温变形热模拟压缩试验的变形温度为750~1150℃,应变率为O.001~10s^(-1),试样高度压缩率为50%。本研究中建立的网络模型集成了模糊推理系统误差反向传播(BP)神经网络的学习算法。结果表明,该模型的预测值与实验结果比较吻合,最大相对误差小于6%。本研究证明模糊神经网络是一种优化TC4-DT钛合金本构关系模型和优化变形工艺参数的有效、实用方法。 By analyzing the high temperature TC4-DT titanium alloys' deformation temperature, strain rate and deformation degree with the parameters of the experimental data flow stress, an adaptive fuzzy-neural network model has been established to predict flow stress data to model the high temperature deformation constitutive relationship of TC4-DT titanium alloy. The experimental results were obtained at deformation temperature of 750-1150 ℃, strain rates of 0.001- 10 s1, and height reduction of 50%. The network integrates the fuzzy inference system with a back-propagation (BP) learning algorithm of neural network. Results show that the predicated values are in satisfactory agreement with the experimental results and the maximum relative error is less than 6%. It proves that the fuzzy-neural network is a very effective and practical method to achieve more optimized TC4 - DT titanium alloy constitutive relation model and optimize deformation process parameters.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第7期1347-1351,共5页 Rare Metal Materials and Engineering
基金 National Natural Science Foundation of China (50824001)
关键词 TC4-DT钛合金 模糊神经网络 本构关系 TC4-DT alloy fuzzy-neural network constitutive relationship
  • 相关文献

参考文献14

  • 1References1Leo Prakash D Ci, Ding R, Moat R J e/ al. Materials Scienceand Engineering: A[Jl 2010, 527(21-22): 5734.
  • 2Momeni A, Abbasi S M. Materials and Design[J], 2010, 31:3599.
  • 3Luo Jiao, Li Miaoquan, Li Hong et al. Materials Science andEngineering: [J], 2009,505: 88.
  • 4Prasad Y V R K, Seshacharyulu T, Medeiros S C e/ al. JMater Process Tech[J], 2001,108: 320.
  • 5Boyer R,Welsch G, Collings E W. Materials PropertiesHandbook: TitaniumOH: ASM International, 1994.
  • 6张兴全,彭颖红,阮雪榆.Ti17合金本构关系的人工神经网络模型[J].中国有色金属学报,1999,9(3):590-595. 被引量:29
  • 7Froes F H,Mitchell A, Senkov O N. Non-AerospaceApplications of Titanium [M]. USA: TMS, 1998: 135.
  • 8Xiong Aiming(熊爱明),Huang Weichao(黄维超),ChenShenghui(陈胜阵)et al.金属学报[J],2002,38: 633.
  • 9Sugeno M, Yasukawa T. IEEE Trans Fuzzy [J].,1993,1(1):7.
  • 10Du H P, Zhang N. Appl Soft Comput[J]2008,8: 76.

二级参考文献16

共引文献40

同被引文献22

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部