期刊文献+

(Cu_(50)Zr_(50))_(92)Al_8非晶合金在过冷液相区的超塑扩散连接 被引量:2

Superplastic and Diffusion Bonding Behavior of the (Cu_(50)Zr_(50))_(92)Al_8 Metallic Glass in Supercooled Liquid Region
原文传递
导出
摘要 (CusoZr50)92Al8非晶合金在过冷液相区表现出优异的超塑性,并且成功的进行了超塑扩散连接(SPF/DB)。根据DSC曲线确定了非晶合金的过冷液相区范围为68℃,并且根据非晶合金在过冷液相区的压缩真实应力.应变曲线,选取了超塑扩散连接实验的连接压力为200MPa,连接温度为470~490℃。XRD图谱显示经过超塑扩散连接后的非晶合金发生了部分晶化,显微硬度提高。将经过超塑扩散连接的样品置于万能拉升机上进行三点弯曲实验至发生断裂,通过对断口形貌的观察分析和界面处的力学分析考察了连接质量。在保持连接压力200MPa不变的情况下,非晶合金获得最好连接效果的工艺参数是:连接温度480℃,连接时间3h。 (CusoZrs0)92A18 metallic glass exhibited excellent superplasticity and diffusion bonding was succeeded in in the supercooled liquid region. The range of super-cooled liquid region is determined as 68℃ according to DSC curves. Through true stress-strain curves the experiment parameters of superplastic and diffusion bonding (SPF/DB) are chosen as bonding pressure of 200 MPa and bonding temperature of 470-490 ℃. XRD patterns show that the metallic glasses after SPF/DB are partially crystallized and the hardness is enhanced. Three-point bending tests were conducted on samples after SPF/DB to fracture using a universal testing machine, and the bonding quality was discussed through the fracture surface analysis. Keeping the pressure a constant of 200 MPa, the metallic glasses after superplastic and diffusion bonding is best bonded when the temperature is 480 ℃ and the bonding time is 3 h.
机构地区 湘潭大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第7期1439-1444,共6页 Rare Metal Materials and Engineering
基金 国家自然科学基金(10972190) 湖南省教育厅重点项目(09A089)
关键词 大块非晶 (Cu50Zr50)92Al8 超塑扩散连接 三点弯曲 bulk metallic glass (CusoZrso)92Al5 superplastic and diffusion bonding 3-point bending
  • 相关文献

参考文献22

  • 1Inoue A. Acta Materialia[i]. , 2000,48: 279.
  • 2Wang Q, Dong C, Qiang J B e/ al. Materials Science andEngineering A [J]. , 2007,18-23: 449.
  • 3Yu P, Bai H Y. Journal of Non-Crystalline Solids[J]. , 2005,351:1328.
  • 4Bae D H,Lim H K, Kim S H e/ al. Acta Materialia[J]. , 2002,50:1749.
  • 5Chiang C L,Chu J P, Lo C T e. al. Intermetallics[J]. , 2004, 12:1057.
  • 6Sun J F, Huang Y J, Shen J et al. Journal of Alloys andCompounds[J]. , 2006,415: 198.
  • 7Jun H J, Lee K S, Chang Y W. Intermetallics, 2010,18:1537.
  • 8Williamson J R. TMS-AIME[C\, Warrendale: TMS, 1988: 315.
  • 9Tian Y B, Lin J Gs Li W et al. Journal of Applied Physics[J]. ,2011,109: 083 508.
  • 10Chan K C, Liu L, Wang J F. Journal of Non-CrystallineSolidsm, 2007,353: 3758.

二级参考文献23

  • 1Inoue A,Nishiyama N,Amiya K,et al.Ti-based amorphous alloys with a wide supercooled liquid region[J].Mater Lett,1994,19(3/4):131-135.
  • 2Calin M,Eckert J,Schultz L.Improved mechanical behavior of Cu-Ti-based bulk metallic glass by in situ forming of nanoscale precipitates[J].Scripta Mater,2003,48(6):653-658.
  • 3Kim Y C,Lee J C,Cha P R,et al.Enhanced glass forming ability and mechanical properties of new Cu-based bulk metallic glasses[J].Materials Science and Engineering,2006,A437(2):248-253.
  • 4Johnson W L.Bulk glass-forming metallic alloys:Science and technology[J].MRS Bull,1999,10(3):42-56.
  • 5Yokoyama Y,Fukaura K,Sunada H.Fatigue properties and microstructures of Zr55Cu30Al10Ni5 bulk glassy alloys[J].Mater Trans JIM,2000,41(6):675-680.
  • 6Inoue A,Zhang T.Impact fracture energy of bulk amorphous Zr55Al10Cu30Ni5 alloy[J].Mater Trans JIM,1996,37 (11):1726-1729.
  • 7Bruck H A,Rosakis A J,Johnson W L.The dynamic compressive behavior of beryllium bearing bulk metallic glasses[J].J Mater Res,1996,11(2):503-511.
  • 8Vaidyanathan R,Dao M,Ravichandran G,et al.Study of mechanical deformation in bulk metallic glass through instrumented indentation[J].Acta Mater,2001,49(18):3781-3789.
  • 9Schuh C A,Nieh T G.A nanoindentation study of serrated flow in bulk metallic glasses[J].Acta Mater,2003,51(1):87-99.
  • 10Greer A L,Castellero A,Madge S V,et al.Nanoindentation studies of shear banding in fully amorphous and partially devitrified metallic alloys[J].Materials Science and Engineering,2004,A375/377:1182-1185.

共引文献7

同被引文献32

  • 1张程煜,姚可夫.Cu_(64)Zr_(36)非晶合金的晶化动力学[J].稀有金属材料与工程,2006,35(1):158-160. 被引量:6
  • 2Inoue A, Takeuchi A. Acta Materialia[J], 2000, 48(1): 279.
  • 3Ashby M F, Greer A L. Scripta Materialia[J], 2006, 54(3): 321.
  • 4Johnson W L. JOM[J], 2002, 54(3): 40.
  • 5Lou H B, Wang X D. Applied Physics Letters[J], 2011, 99(5): 1.
  • 6ZhuZhendong(牛振东),xuJian(徐坚).金属学报[J],2013,49(8):969.
  • 7Wang W H, Wang W K. Physics[J], 1998, 27(7): 398.
  • 8Inoue A, Zhang W, Zhang T. Acta Materialia[J], 2004, 49(14): 2645.
  • 9Fu H M, Wang H. Scripta Materialia[J], 2006, 55(2): 147.
  • 10Zhou B W, Zhang W, Inoue A. Metallurgical and Materials Transactions A[J], 2012, 43(8): 2592.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部