期刊文献+

双峰MWD聚α-烯烃油品减阻剂的研制 被引量:1

Development of double-peak MWD poly α-olefine DRA for oil products
原文传递
导出
摘要 以络合型TiCl3催化剂、N型Ziegler-Natta催化剂和[O,O,N,N]茂金属为主催化剂,采用本体聚合方法,制备了单峰和双峰聚α-烯烃油品减阻剂,考察了催化剂的种类与用量对聚α-烯烃分子质量、分子质量分布及减阻剂性能的影响。结果表明:3种催化剂中,[O,O,N,N]茂金属催化剂的催化效率最高,制备的聚α-烯烃分子质量、分子质量分布及减阻性能最优;使用双金属络合型TiCl3和[O,O,N,N]及N型Z-N和[O,O,N,N]制备的双峰聚α-烯烃减阻剂的起效速度和减阻效果均优于单峰聚α-烯烃减阻剂。 :DRA with single-peak and double-peak poly a-olefine for oil products are prepared through bulk polymerization by using bimetallic complex TIC13 catalyzer, N type Ziegler-Natta catalyzer and [O, O, N, N] metallocene as major catalyzers to determine the impacts of catalyzer types and volumes on molecular mass, distribution of molecular mass of poly a-olefine products and performances of DRA. Research results show that [O, O, N, N] metallocene catalyzer has the highest efficiency in all of the three catalyzers. In addition, produced poly a-olefine products have the most favorable molecular mass, molecular mass distribution and drag reducing performances. Efficiency and drag reducing performances of double-peak poly a-olefine DRA produced by using bimetallic complex TiC13 and [O, O, N, N] and N type Z-N and [O, O, N, N] are all superior than that of single-peak poly a-olefine DRA. (6 Fiaures. 19 References)
出处 《油气储运》 CAS 2013年第7期731-735,共5页 Oil & Gas Storage and Transportation
关键词 减阻剂 聚Α-烯烃 双峰 溶解性 增输率 长输管道 DRA poly a-olefine double-peak dissolvability transmission capacity enhancement long-distanttransportation pipeline
  • 相关文献

参考文献19

二级参考文献167

共引文献252

同被引文献16

  • 1许晶禹,吴应湘,李东晖.液相介质对水平气液间歇流动压降的影响[J].过程工程学报,2006,6(2):161-166. 被引量:6
  • 2MARTiNEZ-PALOU R, MOSQUEIRA M, ZAPATA- REND6N B, et al. Transportation of heavy and extra-heavy crude oil by pipeline.- A review[J]. Journal of Petroleum Science and Engineering, 2011, 75 (3-4): 274-282.
  • 3GHANNAM M, HASAN S, ABU-JDAYIL B, et al. Rheological properties of heavy & light crude oil mixtures for improving flowability[J3. Journal of Petroleum Science and Engineering, 2012, 76 ( 1): 122-128.
  • 4CENTENO G, S/tNCHEZ-REYNA G, ANCHEYTA J, etal. Testing various mixing rules for calculation of viscosity of petroleum blends[J]. Fuel, 2011, 90 ( 12): 3561-3570.
  • 5ALASRKHI A, NAKLA M, AHMED W. Friction factor correlations for gas-liquid/liquid-liquid flows with drag-reducing polymers in horizontal pipes~J]. International Journal of Multiphase Flow, 2011, 37 ( 5): 501-506.
  • 6XU J, WU Y, LI H, et al. Study of drag reduction by gas injection for power-law fluid flow in horizontal stratified and slug flow regimes[J~. Chemical Engineering Journal, 2009, 147 (2-3): 235-244.
  • 7WANG T, BAKER R. Coriolis flowmeters~ A review of developments over the past 20 years, and an assessment of the state of the art and likely future directions[J~. Flow Measurement and Instrumentation, 2014, 40 ( 12 ): 99-123.
  • 8HENRY M, TOMBS M, DUTA M, etal. Two-phase flow metering of heavy oil using a coriolis mass flow meter: A case study[J~. Flow Measurement and Instrumentation, 2006, 17(6): 399-413.
  • 9ZHANG J, XU J, GAO M, eta[. Apparent viscosity of oil-water (coarse) emulsion and its rheological characterization during the phase inversion region[J]. Journal of Dispersion Science and Technology, 2013, 34 ( 8 ) ." 1148-1160.
  • 10关中原.我国油气储运相关技术研究新进展[J].油气储运,2012,31(1):1-7. 被引量:72

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部