期刊文献+

带Hardy项的半线性椭圆方程非球对称解的研究

Study on the Nonradial Solutions for Semilinear Elliptic Equation with Hardy Term
原文传递
导出
摘要 本文考虑如下带Hardy项的半线性椭圆问题非球对称解的存在性.这里Ω={x|x∈R^n,n≥3,a<|x|<1}是E^n(n≥3)中的环,其中0≤μ<μ=((n-2/2)~2,f(u)为已知函数.本文在讨论球对称解的性质的基础上,利用变分方法得到了方程的极小能量解的存在性,并且利用分支理论得到了方程的非球对称解. In this paper, we are concerned with the existence of positive radial and non- radial symmetric solutions for the following semilinear elliptic problem with Hardy term: Ω={x|x∈R^n,n≥3,a〈|x|〈1} is a annulus, and 0≤μ〈μ=((n-2/2)~2,f(u) is some given function. Firstly, we discuss the detailed properties concerning the radial solutions and secondly we shall obtain the minimizing solutions by variational method.Lastly in section 4, we study the non-radial solution problem by bifurcation theory.
出处 《应用数学学报》 CSCD 北大核心 2013年第4期666-679,共14页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(11071094 41174005 40974009)资助项目
关键词 非球对称解 变分方法 能量极小解 分支理论 nonradial symmetric solution minimizing solution variational method bifurcation theoery
  • 相关文献

参考文献12

  • 1Lions P L. On the Existence of Positive Solutions of Semilinear Elliptic Equations. SIAM Rev, 1982, 24: 441-467.
  • 2Ning W M. Uniqueness of Solutions of Dirichlet Problem. J. Differential Equations, 1983, 50: 289-304.
  • 3Ning W M, Nussbaum R. Uniqueness and Non-uniqueness for Positive Radial Solutions of Δu+ f(u,r)= o. Comm. Pure Appl. Math., 1985, 38: 67-108.
  • 4Bandle C, Coffman C V, Marcus M. Nonliear Elliptic Problem in Annular Domains. J. Differential Equation, 1987, 69: 332-345.
  • 5Lin S S. Existence of Positive Nonradial Solutions for Nonlinear Elliptic Equation in Annular Domains. Trans. Amer. Math. Soc., 1992, 332: 775-791.
  • 6Lin S S. Positive Radial Solutions and Nonradial Bifurcation for Semilinear Elliptic Equation in Annular Domains. J. Differential Equation, 1990, 86: 367-391.
  • 7郭杰,郭淑妹,张宁.带Hardy项的半线性椭圆方程解的研究[J].西南师范大学学报(自然科学版),2012,37(1):7-10. 被引量:1
  • 8Rabinowitz P H, Crandall M G. Some Continuation and Varitional Methods for Positive Solutions of Nonlinear Ellipic Eigenvalue Problems. Arch. Rational Mech. Anal., 1975,58: 207-218.
  • 9Sattinger D H. Monotone Methods in Nonlinear Elliptic and Parabolic Boundary Value Problems. Indiana Univ. Math. J., 1972, 21: 970-1000.
  • 10Deng Y B, Guo Z H, Wang G S. Nodal Solutions for P-laplactions with Critical Growth. Nonlinear Analysis, 2003, 54: 1121-1151.

二级参考文献7

  • 1欧增奇,唐春雷.一类半线性椭圆方程解的存在性(英文)[J].西南师范大学学报(自然科学版),2007,32(1):1-5. 被引量:16
  • 2BANDLE C, COFFMAN C V, MARCUS M. Nonlinear Elliptic Problem in Annular Domains [J]. J Diff Equ, 1987, 69(2) : 332--345.
  • 3LIN S S. Existence of Positive Nonradial Solutions for Nonlinear Elliptic Equation in Annular Domains [J]. Trans Amer Math Soc, 1992, 332(2): 775--791.
  • 4LIN S S. Positive Radial Solutions and Nonradial Bifurcation for Semilinear Elliptic Equation in Annular Domains [J]. J Differential Equation, 1990, 86 (2) : 367 -- 391.
  • 5邓宗琦.常微分方程边值问题和Sturm比较理论[M].武汉:华中师范大学出版社,1990.
  • 6DENG Yin-bin, GUO Zhen-hua, WANG Geng-sheng. Nodal Solutions for p Laplactions with Critical Growth [J]. Non- linear Analysis, 2003, 54(5): 1121--1151.
  • 7储昌木,唐春雷.关于一类合作椭圆系统的正解(英文)[J].西南大学学报(自然科学版),2008,30(2):5-9. 被引量:3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部