期刊文献+

一种改进的内埋式永磁同步电机-脉动负载调速系统转子转速估算方法 被引量:1

An Improved Rotor Speed Estimation Method of IPMSM Drives with Fluctuating Load
下载PDF
导出
摘要 在采用无速度传感器控制的内埋式永磁同步电机(IPMSM)驱动周期性脉动负载调速系统中,为了精确地估算转子转速的脉动,提出了一种改进的转子转速估算方法。驱动系统采用转子磁场定向矢量控制和基于模型参考自适应系统(MRAS)的转子位置估算作为其基本的控制策略。通过JMAG软件对电机进行电磁场分析,得到了基于有限元方法的变参数电机模型,进而确定了随电机相电流和转子位置变化的电机参数值,将这些变化的参数嵌入到模型参考自适应系统(MRAS)中以提高转速估算的精度。同时,本文对电机输出转矩还采用了前馈补偿策略以匹配周期性脉动负载来减小转速脉动。通过实验验证了所提出方法的可行性与有效性,实验结果表明,在脉动负载条件下该改进方法能够大幅降低转子实际转速与估算转速之间的误差。 In order to estimate the rotor speed of interior permanent magnet synchronous motor (IPMSM) with sensorless control under cyclic fluctuating load accurately, an improved rotor speed estimation method is proposed. A rotor flux oriented vector control with conventional model reference adaptive system (MRAS) based rotor position/speed estimation is employed as the basic control strategy for IPMSM drive. The finite element method (FEM)-based varying parameter model oflPMSM is built by magnetic field analysis in JMAG software to obtain motor parameter variations caused by different phase currents and rotor positions. These motor parameter variations are used in MRAS for precise rotor speed estimation. Furthermore, several motor output torque patterns matching the cyclic fluctuating load with feed-forward compensation strategy are developed to lower the speed ripple. The experimental results demonstrate the feasibility and effectiveness of the proposed control methods, which shows that the error between actual speed fluctuation band and estimated speed fluctuation band is limited within a very low level.
出处 《电工技术学报》 EI CSCD 北大核心 2013年第7期96-102,共7页 Transactions of China Electrotechnical Society
关键词 内埋式永磁同步电机 周期性脉动负载 模型参考自适应系统 有限元方法 变参数电机模型 Interior permanent magnet synchronous motor(IPMSM), cyclic fluctuating load, model reference adaptive system(MRAS), finite element method(FEM), varying parameter motor model
  • 相关文献

参考文献16

  • 1Babak Nahid Mobarakeh, Farid Meibogy Tabar, Francois Michel Sargos. Back EMF estimation-based sensorless control of PMSM: Robustness with respect to measurement errors and inverter irregularities[J]. IEEE Transactions on Industry Applications, 2007, 43(2): 485-494.
  • 2Xiao Xi, Li Yongdong, Zhang Meng. A sensorless control based on MRAS method in interior permanent magnet machine drive[C]. Proceedings of IEEE PEDS, 2005:734-738.
  • 3Junwoo Kim, Kwanghee Nam. Speed ripple reduction of PMSM with eccentric load using sinusoidal compensation method[C]. International Conference on Power Electronics-ECCE Asia, 2011: 1655-1659.
  • 4Qian w, Panda S K, Xu J X. Speed ripple minimization in PM synchronous motors using iterative learning control[J]. IEEE Transactions onPower Electronics, 2005, 20(1): 53-61.
  • 5Kesamaru K, Sora N. FEM simulation of positioning systems using segment type surface PMSM[C]. Proceedings of ICEMS, 2009: 1-4.
  • 6李和明,张健,刘明基,罗应立.基于时步有限元的永磁同步电机稳态参数改进计算方法[J].电工技术学报,2012,27(4):35-41. 被引量:16
  • 7Vaseghi B, Takorabet N, Nahid Mobarakeh B, et al. Modeling and study of PM machines with inter-turn fault dynamic model-FEM model[J]. Electric Power Systems Research, 2011, 81(8): 1715-1722.
  • 8Giurgea S, Fodorean D, Cirrincione G, et al Multimodel optimization based on the response surface of the reduced FEM simulation model with application to a PMSM[J]. IEEE Transactions on Magnetics, 2008, 44(9): 2153-2157.
  • 9Wang Xiaoyuan, Gu Weiguang. The electromagnetic field analysis of PMSM used for hybrid electric vehicle[C]. Proceedings of PESA, 2009: 1-4.
  • 10Chen Ningning, Ho S L, Fu W N. Optimization of permanent magnet surface shapes of electric motors for minimization of cogging torque using FEM[J]. IEEE Transactions on Magnetics, 2010, 46(6): 2478-2481.

二级参考文献49

  • 1陶果,邱阿瑞,柴建云,肖曦.永磁同步伺服电动机的磁场分析与参数计算[J].清华大学学报(自然科学版),2004,44(10):1317-1320. 被引量:13
  • 2揭贵生,马伟明.考虑转子磁通谐波的永磁同步电机控制性能分析[J].铁道科学与工程学报,2005,2(6):92-97. 被引量:9
  • 3Kickul H, Kwanghee N. A disturbance torque compensation scheme considering the speed measurement delay[C]. Industry Applications Conference, 1996, 1: 403-409.
  • 4Batzel T D, Lee K synchronous motor resolution rotor angle Y. Slotless permanent operation without magnet a high sensor[J]. IEEE Transactions on Energy Conversion, 2000, 15(4): 366-371.
  • 5Cerruto E, Consoli A, Raciti A, et al. A robust adaptive controller for PM motor drives in robotic applications[J]. IEEE Transactions on Power Electronics, 1995, 10(1): 62-71.
  • 6Gasc L, Fadel M, Astier S, et al. Load torque observer for minimising torque ripple in PMSM[C]. ICEMS 2003, 2003, 2: 473-476.
  • 7Senjyu T, Shingaki T, Uezato K. Sensorless vector control of synchronous reluctance motors with disturbance torque observer[J]. IEEE Transactions on Industrial Electronics, 2001, 48(2): 402-407.
  • 8Xu Dianguo, Yang Gao. An approach to torque ripple compensation for high performance PMSM servo system[C]. PESC, 2004, 5: 3256-3259.
  • 9Bertoluzzo M, Buja G, Stampacchia E. Performance analysis of a servo system with high-bandwidth torque disturbance observer[C]. International Workshop on Advanced Motion Control, 2002:110-115.
  • 10Chan Ki K, Hong Woo R, Yoon Ho K. Robust speed control of PMSM using Kalman filter load torque observers[C]. IECON 97, 1997, 2: 918-924.

共引文献212

同被引文献14

  • 1Yu C Y, Tamura J, Reigosa D D, et al. Position self-sensing evaluation of a FI-IPMSM based on high-frequency signal injection methods[J]. IEEE Transactions on Industry Applications, 2013, 49(2): 880-888.
  • 2Kim S, Ha J I, Sul S K, et al. PWM switching frequency signal injection sensorless method in IPMSM[J]. IEEE Transactions on Industry Appli- cations, 2012, 48(5): 1576-1587.
  • 3Smidl V, Peroutka Z. Advantages of square-root extended kalman filter for sensorless control of AC drives[J]. IEEE Transactions on Industrial Elec- tronics, 2012, 59(11): 4189-4196.
  • 4Vasile C S, Boldea I, Andresscu G D. Active- flux-based motion-sensorless vector control of biaxial excitation generator-motor for automobiles[J]. IEEE Transactions on Industry Applications, 2011, 47(2): 812-819.
  • 5Hejny R W, Lorenz R D. Evaluating the practical low-speed limits for back-EMF tracking-based sensorless speed control using drive stiffness as a key metric[J]. IEEE Transactions on Industry Appli- cations, 2011, 47(3): 1337-1343.
  • 6Park Y, Sul S K. A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity[J]. IEEE Transactions on power Electronics, 2012, 27(12): 4837-4846.
  • 7Jung S H, Kobayashi H, Doki S, et al. An improvement of sensorless control performance by a mathematical modelling method of spatial harmonics for a SynRM[C]//International Power Electronics Conference (IPEC), Sapporo, Japan, 2010: 2010-2015.
  • 8Accetta A, Cirrincione M, Pucci M, et al. Sensorless control of PMSM fractional horsepower drives by signal injection and neural adaptive-band filtering[J]. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1355-1366.
  • 9Sadinezhad I, Agelidis V G. Real-time power system phasors and harmonics estimation using a new decoupled recursive-least-squares technique for DSP implementation[J]. IEEE Transactions on Industrial Electronics, 2013, 60(6): 2295-2308.
  • 10Haykin S. Adaptive filter theory[M]. Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部