期刊文献+

一种动态获取簇核心的自动聚类tNN-MEANS算法

A Dynamic Cluster Core Algorithm for Automatic Clustering Based on tNN-MEANS
原文传递
导出
摘要 K-means算法是一种非常重要的聚类算法,然而算法的聚类效果受簇的个数、初始中心点位置的影响很大.提出基于优化初始中心集合和中心移动算法tNN-MEANS,算法有效解决了以下三个问题:1)准确确定大规模数据集中簇的个数;2)精确确定全局高密度的核心区域;3)克服了簇中存在多个高密度区域的问题.运用UCI数据集分别对X-means算法、DBSCAN算法和tNN-MEANS算法进行对比实验,实验结果验证了tNN-MEANS算法的聚类精度、确定簇的个数、蔟划分的正确率等性能均优于与之对比的其它算法. K-means algorthm is a kind of important clustering algorithm, howere, the cluster- ing effect of x-means algorithm is greatly affected by the number of clusters and initial center position[1]. In this paper,we put forward the tNN-MEANS algorithm based on the algorithm of the optimization of the initial center and the center moving of clusters, the algorithm effec- tively solves the following three questions: 1) Accurately determine the number of clusters for massive data set; 2) Accurately determine the cluster core region for global high density data set; 3) effectively overcome the problems of the multiple high density area of the problems in a clustering cluster. We compare tttNN-MEANS algorithm with the alogrithm of P( - means and DBSCAN by experiment using UCI data set, the result of experiment prove tNN-MEANS algorithm proposed in the paper is superior to the others which are x-means and DBSCAN in clustering accuracy, determining the number of clusters and the accuracy of cluster partition.
出处 《数学的实践与认识》 CSCD 北大核心 2013年第13期174-181,共8页 Mathematics in Practice and Theory
关键词 自动聚类 簇核心 tNN-MEANS算法 automatic clustering cluster core tNN-MEANS
  • 相关文献

参考文献6

  • 1Huang Z, Ng M, Lin T, D. Cheung. An interactive approach to building classification models by clustering and cluster validation[J]. Intelligent Data Engineering and Automated Learning iDEAL, 2000: 23-28.
  • 2Li M, Ng M, Cheung Y, and Huang J. Agglomerative fuzzy k-means clustering algorithm with selection of number of clusters[J]. IEEE Transaction of knowlegde and data engineering (TKDE), 2008. 20(11): 1519-1534.
  • 3Li X, Ye Y, Li M, and Ng M. On cluster tree for nested and multi-density data clustering[J]. Pattern Recognition, 2010. 43(9): 3130-3143.
  • 4Li Y, Hung E, Chung K, and Huang J. Building a decision cluster classification model for high dimensional data by a variable weighting k-means method[C]// AI 2008: Advances in Artificial Intelligence, 2008: 337-347.
  • 5尹光,朱玉全,陈耿.一种新的分类器选择集成算法[J].计算机工程,2012,38(8):167-169. 被引量:3
  • 6Sun H, Wang S, and Jiang Q. Fcm-based model selection algorithms for determining the number of clusters[J]. Pattern Recognition, 2004, 37(10): 2027-2037.

二级参考文献11

  • 1Albert H R K,Sabourina R,Britto A S,et al.From Dynamic Classifier Selection to Dynamic Ensemble Selection[J].Pattern Recognition,2008,41(5):1718-1731.
  • 2Woloszynski T,Kurzynski M.On a New Measure of Classifier Competence Applied to the Design of Multiclassifier Systems[C]//Proc.of ICIAP’09.Berlin,Germany:Springer-Verlag,2009:995-1004.
  • 3Zhou Zhihua,Wu Jianxin,Tang Wei.Ensembling Neural Networks:Many Could Be Better Than All[J].Artificial Intelligence,2002,137(1/2):239-263.
  • 4Tumer K,Ghosh J.Classifier Combining:Analytical Results and Implications[C]//Proc.of AAAI Workshop on Integrating Multiple Learned Models for Improving and Scaling Machine Learning Algorithms.[S.l.]:AAAI Press,1996.
  • 5Hoque S S,Fairhurst M C.Diversity in Multiple Classifier Ensembles Based on Binary Feature Quantization with Application to Face Recognition[J].Applied Soft Computing,2008,8(1):437-445.
  • 6Meynet J,Jean-Philippe T.Information Theoretic Combination of Pattern Classifiers[J].Pattern Recognition,2010,43(10):3412-3421.
  • 7Dietterich T G.Machine Learning Research:Four Current Directions[J].AI Magazine,1997,18(4):97-136.
  • 8Shipp C A,Kuncheva L I.Relationships Between Combination Methods and Measures of Diversity in Combining Classifiers[J].Information Fusion,2002,3(2):135-148.
  • 9Brown G.A New Perspective on Information Theoretic Feature Ranking[C]//Proc.of International Conf.on Artificial Intelligence and Statistics.Fort Lauderdale,USA:[s.n.],2009.
  • 10Brown G.An Information Theoretic Perspective on Multiple Classifier Systems[C]//Proc.of International Workshop on Multiple Classifier Systems.Berlin,Germany:Springer-Verlag,2009:344-353.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部