期刊文献+

点式模糊化拟一致结构诱导的双拓扑 被引量:1

Topologies Induced by a Fuzzifying Quasi-uniformity
原文传递
导出
摘要 引入点式模糊化拟一致结构u,并由其分别导出了模糊化内部算子和模糊化闭包算子,进而诱导两个模糊化拓扑(?)和η_u.结果表明,若u是点式模糊化拟一致结构,则T_u=η_u不一定成立;若u是点式模糊化一致结构,则(?)=η_u成立. Based on a pointwise fuzzifying quasi-uniformity μ, a fuzzifying interior operator and a fuzzifying closure operator are induced. Moreover, two fuzzifying topologies τμ and ημ are induced. It is shown that τμ = ημ doesn't hold permanently and τμ = ημ when μ is a pointwise fuzzifying uniformity.
作者 王冰 孟凡友
出处 《数学的实践与认识》 CSCD 北大核心 2013年第13期221-224,共4页 Mathematics in Practice and Theory
基金 黑龙江省自然科学基金面上项目(A201209) 牡丹江师范学院省级重点创新预研项目(SY201223)
关键词 点式模糊化拟一致结构 模糊化内部算子 模糊化闭包算子 模糊化拓扑 pointwise fuzzifying quasi-uniformity fuzzifying interior operator fuzzifyingclosure operator fuzzifying topology
  • 相关文献

参考文献6

  • 1Shi F G. Pointwise uniformities in fuzzy set theory[J]. Fuzzy Sets and Systems, 1998, 98: 141-146.
  • 2Yue Y L, Fang J M. Extension of Shi's quasi-uniformities in a Kubiak-Sostak sense[J]. Fuzzy Sets and Systems, 2006, 157: 1956-1969.
  • 3Yue Y L, Shi F G. On (L, M)-fuzzy quasi-uniform spaces[J]. Fuzzy Sets and Systems, 2007, 158: 1472-1485.
  • 4Yue Y L, Shi F G. L-fuzzy uniform spaces[J]. J Korean Math Soc, 2007, 44(6): 1383-1396.
  • 5Hohle U. Probabilistic metrization of fuzzy uniformities[J]. Fuzzy Sets and Systems, 1982, 8: 63-69.
  • 6Xu L S. Characterizations of fuzzifying topologies by some limit structures[J]. Fuzzy Sets and Systems, 2001, 123: 169-176.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部