期刊文献+

数控机床进给系统机械刚度的闭环参数辨识 被引量:8

Mechanical Stiffness Identification for Feed System of CNC Machine Tools under Closed-loop Conditions
下载PDF
导出
摘要 对于高速高精度机床,进给系统机械刚度是影响机床动态特性的重要参数。以采用商用数控系统的机床为研究对象,提出了机械刚度闭环辨识的新方法。针对移动工作台机械系统的二阶系统模型,推导出全闭环条件下的刚度辨识递推公式,通过输入二次位移曲线实现系统的持续有效激励。为验证提出的机械刚度辨识方法的有效性,进行了仿真和实验,结果表明,提出的刚度闭环辨识方法不受数控系统的开放性限制,方法简便、有效,适合生产现场。 As mechanical stiffness is an important parameter and has a great influence on dynamic performance of high-speed high-precision machine tools.This paper proposed a novel method that servo mechanical stiffness can be identified under closed-loop conditions for machine tools in which popular commercial computer numerical control(CNC) system was employed.Based on 2 order control system for feeding mechanical system of worktable,an identification model for mechanical stiffness was obtained,and continuous and effective stimulation was achieved by inputting programmed displacement commands which were described as a multi-segment quadratic curve to CNC system.To verify validity of the proposed method,the simulations and experiments were performed,results show that the method is convenient,effective and suitable for commercial CNC system even closed-architecture system under industrial conditions.
机构地区 上海理工大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2013年第14期1868-1872,共5页 China Mechanical Engineering
基金 国家自然科学基金资助项目(51005158) 国家科技支撑计划资助项目(2012BAF01B00)
关键词 高速、高精度 进给系统 机械刚度 辨识 high-speed and high precision feeding system mechanical stiffness identification
  • 相关文献

参考文献1

  • 1周玉清.基于无传感器信息的数控机床伺服进给系统性能评估研究[D].西安:西安交通大学,2009.

共引文献1

同被引文献67

  • 1赵希梅,郭庆鼎.基于学习前馈补偿的直线伺服系统H_∞鲁棒跟踪控制[J].电工技术学报,2005,20(4):78-82. 被引量:7
  • 2宋亦旭,王春洪,尹文生,贾培发.永磁直线同步电动机的自适应学习控制[J].中国电机工程学报,2005,25(20):151-156. 被引量:44
  • 3张伯鹏,张年松.机床横梁重力变位的自演进补偿[J].清华大学学报(自然科学版),2006,46(2):191-193. 被引量:19
  • 4石阳春,周云飞,李鸿,李介明,黄永红.长行程直线电机的迭代学习控制[J].中国电机工程学报,2007,27(24):92-96. 被引量:39
  • 5张景和,张顺国,赵海潇,何远新,董申.大型超精密机床导轨卸荷系统结构设计与测试[J].光学精密工程,2007,15(9):1383-1390. 被引量:6
  • 6MEULEN S V D, TOUSAIN R,BOSGRA O. Fixedstructure feed forward controller tuning exploitingiterative trials , applied to a high-precisionelectromechanical servo system[C]// American ControlConference, 2007. ACC'07, New York, NY, USA,2007: 4033-4039.
  • 7DIJKSTRA B , BOSGRA O H. Exploiting iterativelearning control for input shaping, with application to awafer stage[J]. American Control Conference, 2003,6(6): 4811-4815.
  • 8TOUSAIN R, EDUARD V D M, BOSGRA O. Designstrategy for iterative learning control based on optimalcontrol[C]// Proceedings of the 40th IEEE Conference onDecision and Control Orlando, Florida USA, December2001.2001: 4463-4468.
  • 9DING F, LIU G,LIU X P. Partially coupled stochasticgradient identification methods for nonuniformly sampledsystems[J]. IEEE Transactions on Automatic Control,2010,55(8): 1976-1981.
  • 10BENJAMIN TF, MISHRAS, TOMIZUKA M. Modelinverse based iterative learning control using finiteimpulse response approximations[C]//Proceedings ofAmerican Control Conference Hyatt Regency Riverfront,StLouis, MO, USA, June 10-12, 2009: 342-349.

引证文献8

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部