期刊文献+

苹果三维树冠光能利用效率分布模拟

Simulation of Three-dimensional Distribution of Light Use Efficiency in Apple Canopy
下载PDF
导出
摘要 为了模拟树冠内叶片光能利用效率(LUE)三维分布,构建了三维树冠净光合速率(Pn)和LUE耦合模型,LUE由Pn和光合有效辐射(PAR)比值求出。以27年生开心形‘富士’苹果树(Malus domestica Borkh.cv.‘Fuji’)为试材,通过实测确定三维树冠内叶片和PAR分布,并据2011—2012年测定数据拟合相关模型参数。模拟结果表明,当光合有效辐射低于约750μmol/(m2·s)时,树冠整体LUE随PAR的增加而增加,超过750μmol/(m2·s)后,LUE随PAR的增加而略有降低;LUE随空气CO2浓度和湿度的增加而增加。光照充足时[PAR=1500μmol/(m2·s)],从树冠底部到顶部,树冠整体LUE从0.02481mol/mol降低为0.01250mol/mol,降低了50%,树冠两侧和内膛的差异不到10%。在一天当中苹果树冠LUE整体呈双峰曲线,晴天的LUE比阴天高22.7%,约为0.01148mol/mol。研究显示,该模型可模拟出不同环境条件下苹果三维树冠LUE的三维分布和日变化。 A coupled model of photosynthetic rate (P n ) and light use efficiency (LUE) were developed to simulate the three-dimensional distribution of LUE in apple canopy. For convenience, LUE was expressed as the ratio of net P n to photosynthetically active radiation (PAR). The experiment was conducted in a ‘ Fuji ’ apple (Malus domestica Borkh. cv. ‘ Fuji ’ ) orchard during the 2011-2012 growing seasons. The simulation was shown that: LUE increased rapidly with increasing CO 2 concentration and humidity. LUE consistently increased with the increase of PAR when PAR was below 750 μmol/(m 2 · s). And it decreased with the increase of PAR when PAR excessed 750 μmol/(m 2 · s). When canopy height increased from bottom to upper canopy, LUE decreased by 50% from 0.02481 mol/mol to 0.01250 mol/mol with no more than 10% difference between the sides and the inner part. The diurnal course of LUE in the canopy showed a double-peak curve on clear day. The average LUE on clear days were 0.01148 mol/mol which were about 22.7% higher than cloudy days. The study indicated that: the sensitivity of LUE to microclimatic factors could be systemically assessed by the coupled model.
出处 《中国农学通报》 CSCD 2013年第19期107-112,共6页 Chinese Agricultural Science Bulletin
基金 北京市科委项目"北京市林果乡土专家科技示范园基地建设"(Z111100056811005) 北京农业职业学院项目"苹果开心树形最佳树体结构研究与示范"(XY-BS-12-02)
关键词 苹果 光能利用效率 树冠 三维 模型 光合作用 光合有效辐射 apple light use efficiency canopy three dimensional model photosynthesis photosynthetically active radiation
  • 相关文献

参考文献17

  • 1Buler Z, Mika A. The influence of canopy architecture on lightinterception and distribution in ‘Sampion’ apple trees[J].Joumal ofFruit and Ornamental Plant Research,2009,17(2):45-52.
  • 2Hampson C R, Quamme H A, Kappel F,et al. Varying density withconstant rectangularity: I. Effects on apple tree growth and lightinterception in tree training systems over ten years[J].HortScience,2004,39(3):501-506.
  • 3高照全,赵晨霞,程建军,张显川.我国4种主要苹果树形冠层结构和辐射三维分布比较研究[J].中国生态农业学报,2012,20(1):63-68. 被引量:14
  • 4Jenkins JP, Richardson AD, Braswell BH, et al. Refining light-useefficiency calculations for a deciduous forest canopy usingsimultaneous tower-based carbon flux and radiometricmeasurements[J] .Agricultural and Forest Meteorology,2007,143:64-79.
  • 5高照全,李天红,冯社章,张显川.苹果叶片的净光合速率和光能利用效率的动态模拟[J].植物生理学通讯,2010,46(5):487-492. 被引量:12
  • 6高照全,赵晨霞,张显川,冯社章.苹果三维树冠的净光合速率分布模拟[J].生态学报,2012,32(21):6688-6694. 被引量:10
  • 7Johnson I R, Parsons A J,Ludlow M M. Modeling photosynthesisin monocultures and mixtures[J].Australian Journal of PlantPhysiology,1989,16(6):501-516.
  • 8Farquhar G D, von Caemmerer S, Berry J A. A biochemical modelof photosynthetic CO2 assimilation in leaves of C3 species[J].Planta,1980,149(1):78-90.
  • 9Leuning R. A critical appraisal of a combinedstomatal-photosynthesis model for C3 plants[J].Plant, Cell andEnvironment, 1995,18(4):339-355.
  • 10Liu T, Song F, Liu S, et al. Light interception and radiation useefficiency response to narrow-wide row planting patterns in maize[J].Australian Journal of Crop Science,2012,6(3):506-513.

二级参考文献41

  • 1高照全,王小伟,魏钦平,杨洪强.桃树不同部位调节贮存水的能力[J].植物生理学通讯,2003,39(5):429-432. 被引量:13
  • 2高登涛,韩明玉,李丙智,张林森,白茹.渭北3种不同类型苹果园冠层特征及光照特性[J].果树学报,2007,24(3):259-262. 被引量:34
  • 3张显川,高照全,付占方,方建辉,李天红.苹果树形改造对树冠结构和冠层光合能力的影响[J].园艺学报,2007,34(3):537-542. 被引量:98
  • 4Annandale JG, Jovanovic NZ, Cambell GS, Sautoy ND, Lobit P (2004). Two-dimensional solar radiation interception model for hedgerow fruit trees. Agric For Meteorol, 121:207-225.
  • 5Ball JT, Woodrow IE, Berry JA (1987). A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens I ed. Progress in Photosynthesis Research. Netherlands: Martinus Nijhoff Publishers.
  • 6Bernacchi CJ, Singsaas EL, Pimentel C, Portis JRAR, Long SP (2001). Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ, 24:253-259.
  • 7Dang QL, Margolis HA, Collatz GJ (1998). Parameterization and testing of a coupled photosynthesis-stomatal conductance model for boreal trees. Tree Pbysiol, 18:141-153.
  • 8Farquhar GD, von Caemmerer S, Berry JA (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149:78-90.
  • 9Ferrara G, Flore JA (2003). Comparison between different meth- ods for measuring transpiration in potted apple trees. Biol Plant, 46 (1): 41-47.
  • 10Garcia-Quijano JF, Barros AP (2005). Incorporating canopy physiology into a hydrological model: photosynthesis, dynamic respiration, and stomatal sensitivity. Ecol Mod, 185:29,-.49.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部