期刊文献+

基于免疫优化的产品系统可靠性参数区间预测方法 被引量:4

Intervals prediction of system reliability parameters based on immune optimization
下载PDF
导出
摘要 针对当前系统可靠性预测方法的不足,提出一种基于免疫优化的区间预测方法.构建可靠性参数预测神经网络模型,由极端学习机(ELM)算法进行训练,并以修正BFGS法对网络的左侧权值和阈值进行调整.在由该网络得到的预测点值和网络权重的基础上,根据非线性回归模型构建可靠性参数的区间预测值(PI),PI的质量取决于网络结构和权衰减调节参数.结合PI的覆盖率和平均区间比例长度提出一种新的PI综合评价指标,以此衡量PI的质量;引入免疫优化算法优化区间预测值和网络结构,以最小化综合评价指标为成本函数,寻求决策变量,即网络隐层神经元个数和权衰减调节参数的最优值.将提出的方法和理论应用于某系列数控车床的可靠性参数平均无故障时间的预测,证明了其预测性能优于传统方法. Aiming at the deficiencies of system reliability prediction, an interval prediction method based on immune optimization algorithm was put forward. First, a prediction neural network of reliability parameters was constructed, which was trained by extreme learning machine (ELM) algorithm. The improved BFG'S technique was used to optimize left weights and biases of the network. Then nonlinear regression model was used to construct prediction interval(PI) for reliability parameters based on its point value derived from the trained neural network and the weights of network. So the PI quality depends on the network structure and the weight decay regularizing factor. The immune algorithm was adopted to automate the neural network model selection and adjustment of the weight decay regularizing factor. Model selection and parameter adjustment were carried out through minimization of the PI based cost function called coverage and proportional length based criterion(CPLC), which combines the coverage probability and the mean interval proportional length of PI. Finally, the proposed theory and method was applied to predict the reliability parameter--mean time between failure(MTBF) of computer numerical control(CNC) lathes, which proved the that prediction performance of the method was better than that of the traditional methods.
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2013年第6期1013-1021,共9页 Journal of Zhejiang University:Engineering Science
基金 国家“973”重点基础研究发展计划资助项目(2011CB706500) 国家自然科学基金资助项目(51175456,51275459)
关键词 可靠性参数 极端学习机(ELM) 非线性回归 区间预测 免疫优化 reliability parameter ELM nonlinear regression interval prediction immune optimization
  • 相关文献

参考文献20

  • 1于捷,石耀霖,张海龙,申桂香,贾亚洲.基于Bayes方法的数控机床可靠性研究[J].机床与液压,2009,37(8):251-253. 被引量:6
  • 2HO S L, XIE M. The use of ARIMA models for relia- bility forecasting and analysis [J]. Computers & Indus- trial Engineering, 1998,35 (1/2) : 213 - 216.
  • 3HO S L, XIE M, GOH T N. A comparative study of neural network and Box-Jenkins ARIMA modeling in time series prediction [J]. Computers & Industrial Engi- neering, 2002,42 (2-4): 371-375.
  • 4MOURAMDC, ZIO E, LINSID, et al. Failure and reliability prediction by support vector machines regres- sion of time series data [J]. Reliability Engineering & System Safety, 2011,96(11) : 1527 - 1534.
  • 5CHEN K Y. Forecasting systems reliability based on support vector regression with genetic algorithms [J]. Reliability Engineering & System Safety, 2007,92 ( 4 ) : 423 -432.
  • 6HU C H, SI X S, YANG J B. System reliability predic- tion model based on evidential reasoning algorithm with nonlinear optimization [J]. Expert Systems with Applica- tions, 2010, 37(3) : 2550 - 2562.
  • 7KALOGIROU S. Articial neural networks in renewable energy systems: a review [J]. Renewable and Sustain- able Energy Reviews, 2001,5 (4): 373 -401.
  • 8LOLAS S, OLATUNBOSUN O A. Prediction of vehi- cle reliability performance using artificial neural net- works [J]. Expert Systems with Applications, 2008, 34 (4) :2360 - 2369.
  • 9XU K, XIE M, TANG LC, et al. Application of neural networks in forecasting engine systems reliability [J]. Applied Soft Computing, 2003,2(4) : 255 - 268.
  • 10陈保家,陈雪峰,何正嘉,李兵.利用运行状态信息的机床刀具可靠性预测方法[J].西安交通大学学报,2010,44(9):74-77. 被引量:12

二级参考文献20

  • 1彭滔,汪鲁才,吴桂清,张颖.一种改进的神经网络机械故障诊断专家系统[J].计算机工程与应用,2007,43(1):232-234. 被引量:9
  • 2刘芳 梁雪峰.一种基于线性组合核的SVM算法[J].计算机科学,.
  • 3王磊.[D].西安电子科技大学,.
  • 4戴树森.国外关于系统可靠性综合的置信区间估计方法的概况[R].北京:中国宇航学会第一届可靠性学术年会专题报告,1983.
  • 5于丹,戴树森.复杂系统可靠性综合评价方法研究[J].北京:中国科学院系统科学研究所,1996.
  • 6IEEE Std. IEEE Recommended Practice for the Design of Reliable Industrial and Commercial Power Systems [ J ]. 1997.
  • 7ZIO E. Reliability engineering: old problems and new challenges [J]. Reliability Engineering and System Safety, 2009,94(2) : 125-141.
  • 8NAGI Z G, MARK A L. A neural network degradation model for computing and updating residual life distributions[J]. IEEE Transactions on Automation Science and Engineering, 2008,5 (1) : 154-163.
  • 9CHINNAM R t3, RAI B. Intelligence in reliability engineering [M]. Berlin, Germany: Springer,2007:223- 260.
  • 10CAO H, CHEN X, ZI Y, et al. End milling tool breakage detection using lifting scheme and Mahalanobis distance[J].International Journal of Machine Tools and Manufacture, 2008,48(2) : 141-151.

共引文献28

同被引文献59

引证文献4

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部