期刊文献+

间充质干细胞作为新型纳米靶向抗肿瘤药物载体的研究进展 被引量:1

Progress in mesenchymal stem cells as a novel nano-targeted antitumor drug carrier
原文传递
导出
摘要 近年来,作为药剂学研究热点领域之一的靶向给药系统受到越来越多的关注。然而,这些抗肿瘤靶向载药运输系统存在诸多缺点如靶向效率低等而限制其在临床上的应用,提高肿瘤靶向效率已成为纳米药物研发和临床应用的瓶颈问题。因此,迫切需要设计并开发新型靶向药物递送载体。最近研究表明,间充质干细胞(MSCs)具有肿瘤趋向性和可迁移等特点,这些特点使得它们能够作为理想的抗肿瘤靶向药物递送载体来治疗实体瘤和转移瘤。综述了利用间充质干细胞作为肿瘤治疗的靶向药物递送载体的研究进展,概述了该系统存在的问题和挑战,并提出了针对这些问题的解决方法。 In recent years, targeted drug delivery system as one of the hottest areas in pharmaceutical research has received more and more attention. However, the targeted anti-tumor drug delivery system has many shortcomings including low targeted efficiency which limit its clinical application. Elevating tumor targeting efficiency has become the bottleneck of nano-drug development and clinical application. Therefore, it is urgent to design and develop novel targeted drug delivery vehicle. Recent studies showed that mesenchymal stem cells (MSCs) have characters of tumor tropism and migration, which make them as ideal targeted anti-tumor drug delivery carriers for the treatment of solid and metastatic tumors. This paper reviews the progress in using MSCs as targeted anti-tumor drug delivery carrier, recapitulates the problems and challenges of the system, and proposes a solution for these problems.
出处 《国际生物医学工程杂志》 CAS 2013年第3期129-133,I0002,共6页 International Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(31270019) 教育部新世纪优秀人才项目(NCET-11-0275) 广东省自然科学基金资助项目(S2012010010046) 深圳市科技计划杰青资助项目(JC201005270308A)
关键词 间充质干细胞 纳米载体 肿瘤治疗 主动靶向 Mesenchymal stem ceils Nano-carrier Tumor therapy Active target
  • 相关文献

参考文献44

  • 1aAllen TM, Cullis PR. Drug delivery systems: entering the main- stream[J]. Science, 2004, 303(5665): 1818-1822.
  • 2Moritake S, Taira S, Ichiyanagi Y, et al. Functionalized nano-mag- netie particles for an in vivo delivery system[J]. J Nanosci Nanotech- nol, 2007, 7(3): 937-944.
  • 3Hu Yu-lan, Fu Ying-hua, Tabata Y, et al. Mesenchymal stem ceils: a promising targeted-delivery vehicle in cancer gene therapy[J]. J Control Release, 2010, 147(2): 154-162.
  • 4Photos PJ, Baeakova L, Discher B, et al. Polymer vesicles in vivo: correlations with PEG molecular weight[J]. J Control Release, 2003, 90(3): 323-334.
  • 5Danhier F, Feron O, Preat V. To exploit the tumor microenviron- ment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery[J]. J Control Release, 2010, 148(2): 135-146.
  • 6Roby A, Erdogan S, Torehilin VP. Enhanced in vivo antitumor effi- cacy of poorly soluble PDT agent, meso-tetraphenylporphine, in PEG-PE-based tumor-targeted immunomieelles[J]. Cancer Biol Ther, 2007, 6(7): 1136-1142.
  • 7Hatakeyama H, Akita H, Kogure K, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-spe- cific cleavable PEG-lipid[J]. Gene Ther, 2007, 14(1): 68-77.
  • 8Dennis JE, Cohen N, Goldberg VM, et ah Targeted delivery of pro- genitor cells for cartilage repair[J]. J Orthop Res, 2004, 22(4): 735- 741.
  • 9Shah K. Mesenehymal stem ceils engineered for cancer therapy[J]. Adv Drug Deliv Rev, 2012, 64(8): 739-748.
  • 10Banerji SK, Hayes MA. Examination of nonendocytotic bulk trans- port of nanoparticles across phospholipid membranes[J]. Langmuir, 2007, 23(6): 3305-3313.

同被引文献14

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部