期刊文献+

智能空间中安全规则生成算法研究

Research of Smart Space Security Rule Generation Algorithm
下载PDF
导出
摘要 智能环境使越来越多的安全成为问题之一,在使用智能环境时,必须制定一些自己的规则,对普通用户来说,制定规则是件比较困难的事情。基于这种情况,可以应用机器学习和协同过滤的方式,给初始用户推荐一些规则格式和基本内容以作参考。这样初始用户可以节省很多时间。 It is very difficult for primary users to make up new policies by themselves. To deal with such situation, in this paper a fundamental framework is proposed to fully describe the generation process of policies in pervasive computing appli- cations. Furthermore, the collaborative filtering algorithms based on cosine vector are utilized to calculate characteristic simi- larity and classic similarity to aggregate the user identity similarity. The machine learning algorithm is adopted to generate the policies which will be recommended to the users. By utilizing the recommended policies, the users can finish the system policies setting process in a more quick and accurate way.
作者 渠连恩 赵珊
出处 《电脑编程技巧与维护》 2013年第14期85-86,共2页 Computer Programming Skills & Maintenance
关键词 智能环境 机器学习 协同过滤 ubiquitous computing machine learning recommendation system recommendation algorithm collaborative filtering
  • 相关文献

参考文献1

二级参考文献13

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献558

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部