期刊文献+

fos-GFP转基因小鼠学习记忆能力的变化

THE CHANGES OF LEARNING AND MEMORY ABILITY IN fos-GFP TRANSGENIC MICE
下载PDF
导出
摘要 目的研究fos-GFP转基因小鼠学习记忆能力的变化。方法转基因组和对照组小鼠分别采用高架十字迷宫、旷场实验、水迷宫测试、条件性场景恐惧记忆测试方法进行小鼠的自发活动、焦虑状态及学习记忆能力测试。结果 fos-GFP转基因小鼠与正常小鼠旷场内运动距离、运动速度、在旷场边缘区逗留的时间及在十字迷宫中开放臂探究的时间比较差异无显著性(P>0.05);两组小鼠水迷宫训练中各时间点找到平台的潜伏期比较差异无显著性(P>0.05);两组小鼠水迷宫测试中在各象限时间百分比比较,差异无显著性(P>0.05)。fos-GFP转基因小鼠在无特定场景提前接触的条件恐惧测试中的僵立时间与正常小鼠比较差异有显著性(t=9.48,P<0.001)。结论 fos-GFP转基因小鼠海马依赖性的联合型学习记忆能力有所提高。 Objective To study the changes of the ability on learning and memory in fos GFP transgenic mice. Me- thods The mice in the fos-GFP group and the control were tested by using overhead cross maze, open field, and Morris Water Maze. The spontaneous activity, anxiety state, the ability of learning and memory were tested as well. Results The differences between fos-GFP mice and the controls were not significant in terms of distance of motion within the field, velocity,duration of stay at the marginal zone, and duration of open arm in the maze (P〉0.05). The difference between the mice in the two groups was not significant with regard to latency of finding the flat at each time point (P〉0.05), and the percentage of duration in target quadrant in Morris Water Maze (P 〉0.05), and similar freezing time in contextual fear conditioning test (P〉0.05). The fos-GFP mice showed higher freezing level than normal controls in no-exposed fear conditioning (t=9.48,P〈0.01). Conclusion The ability of hippoeampus-dependent associative learning and memory in fos-GFP transgenic mice was somewhat improved.
出处 《青岛大学医学院学报》 CAS 2013年第4期297-298,302,共3页 Acta Academiae Medicinae Qingdao Universitatis
基金 国家自然科学基金资助项目(81070881)
关键词 fos- GFP融合蛋白 学习 记忆 神经行为学表现 小鼠 fos GFP fused protein learning memory neurobehavioral manifestations mice
  • 相关文献

参考文献10

  • 1DAVIS S, BOZON B, LAROCHE S. How necessary is the ac tivation of the immediate early gene zif268 in synaptie plasticity and learning[J]? Behav Brain Reseach, 2003,142(1/2):17-30.
  • 2PLATH N, OHANA O, DAMMERMANN B, et al. Arc/Arg3.1 is essential for the consolidation of synaptic plasticity and memories[J]. Neuron, 2006,52: 437 444.
  • 3GUZOWSKI J F, SETI.OW B, WAGNER E K, ct al. Experience dependent gene expression in the rat hippocampus after spatial learning: a comparison of the immediate-early genes Arc, c-fos, and zif268[J]. J Neurosci, 2001,21:5089 5098.
  • 4BARTH A L, GERKIN R C, DEAN K L. Alteration of neuronal firing properties after in vivo experience in a Fos-GFP transgenic mouse[J]. J Neurosci, 2004,24 : 6466-6475.
  • 5WAI.F A A, FRYE C A. The use of the elevated plus maze as an assay of anxiety related behavior in rodents [J]. Nature Protocol, 2007,2 (2) : 322-328.
  • 6HALT A R, DALLAPOAZZA R F, ZHOU Y. CaMK Ⅱ binding to GluN2B is critical during memory consolidation [J]. The EMBO Journal, 2012,31 :1203-1216.
  • 7MATUS AMATP, HIGGINS EA, BARRIENTOS R M, et al. The role of the dorsal hippocampus in the acquisition and retrieval of context memory representations[J]. J Neurosci, 2004,24:2431- 2439.
  • 8FRANKLAND P W, JOSSELYN S A, ANAGNOSTARAS S G, et al. Consolidation of CS and US representations in associ ative fear eonditioning[J]. Hippocampus, 2004,14 : 557-569.
  • 9邱贝贝,徐珞.PVN-海马ghrelin神经元投射及对海马电活动影响[J].青岛大学医学院学报,2013,49(1):16-18. 被引量:5
  • 10陈雪红,叶俊丽,吴飏飏,纪尚起,崔瑞耀.CNTF对AMPA和NMDA引起海马神经元Ca^(2+)浓度升高的作用[J].青岛大学医学院学报,2002,38(3):247-248. 被引量:1

二级参考文献11

  • 1MENYHERT J, WITTMANN G, HRABOVSZKY E, et al. Distribution of ghrelin-immunoreactive neuronal networks in the human hypothalamus[J]. Brain Research, 2006,1125 (1) 31-36.
  • 2GUAN Y F, TANG M, JIANG Z Y, et al. Excitatory effects of motilin in the hippocampus on gastric motility in rats[J]. Brain Research, 2003,984(1-2) :33-41.
  • 3MONNIKES H, TEBBE J, GROTE C, et al. Involvement of CCK in the paraventricular nucleus of the hypothalamus in the CNS regulation of colonic motility[J]. Digestion, 2000,62 (2/ 3):178-184.
  • 4GUO F, XU L, SUN X, et al. The paraventricular nucleus modulates thyroidal motilin release and rat gastric motility[J].Journal of Neuroendocrinology, 2011,23(9):767-777.
  • 5KING B M, ARCENEAUX E R, COOK J T, et al. Temporal lobe lesion-induced obesity in rats: an anatomical investigation of the posterior amygdala and hippocampal formation [J]. Physiology & Behavior, 1996,59(4/5):843-848.
  • 6SAKATA I, PARK W M, WALKER A K, et al. Glucose- mediated control of ghrelin release from primary cultures of gastric mucosal cells[J]. American Journal of Physiology-en- docrinology and Metabolism, 2012,302(10):E1300-E1310.
  • 7ISAACSON R L. A fuzzy limbic system[J]. Behavioural Brain Research, 1992,52(2) : 129-131.
  • 8Makoto Inoue,Chikao Nakayama,Hiroshi Noguchi. Activating mechanism of CNTF and related cytokines[J] 1996,Molecular Neurobiology(3):195~209
  • 9齐玉霞,徐珞.ghrelin在海马调控下丘脑室旁核胃牵张敏感神经元活动中作用[J].青岛大学医学院学报,2012,48(5):377-380. 被引量:6
  • 10侯滕菲,徐珞.ghrelin对糖尿病大鼠下丘脑弓状核胃牵张敏感神经元放电活动的影响[J].青岛大学医学院学报,2012,48(5):381-383. 被引量:3

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部