期刊文献+

被动锁模的传统孤子、耗散孤子掺铒光纤激光器 被引量:6

Passively Mode-Locked Traditional Soliton,Dissipative Soliton Er-Doped Fiber Lasers
原文传递
导出
摘要 报道了基于氧化石墨烯被动锁模的超短脉冲掺铒光纤激光器。通过设计激光腔的结构,可使激光器分别运转在全负色散区以及正色散区。当激光器运行在全负色散区时,可得到重复频率为61 MHz的传统孤子脉冲输出,脉冲宽度为500fs,光谱宽度为5.7nm,最大输出功率为6mW,单脉冲能量为0.1nJ。当激光器运行在正色散区时,可得到重复频率为11.5MHz的耗散孤子脉冲输出,脉冲宽度为143ps,光谱宽度为2.4nm,最大输出功率为21mW,单脉冲能量为1.8nJ。 We demonstrate the ultrafast graphene oxide mode-locked Er-doped fiber lasers. The lasers can operate in all anomalous dispersion regime and normal dispersion regime respectively through the cavity design. When the laser operates in the all anomalous dispersion regime, the traditional soliton pulse trains at repetition rate of 61 MHz are generated. The measured pulse width is 500 fs, spectral width is 5.7 nm, and the maximum output power is 6 mW, corresponding to single pulse energy of 0.1 nJ. In the normal dispersion regime, dissipative soliton pulse trains at repetition rate of 11.5 MHz are generated. The pulse width is 143 ps, spectral width is 2.4 nm, and the maximum output power is 21 mW, corresponding to single pulse energy of 1.8 nJ.
出处 《中国激光》 EI CAS CSCD 北大核心 2013年第7期13-17,共5页 Chinese Journal of Lasers
基金 国家自然科学基金(61177048) 北京市自然科学基金重点项目(KZ2011100050011)
关键词 激光器 掺铒光纤激光器 被动锁模 氧化石墨烯 lasers erbium-doped fiber laser passive mode-locking graphene oxide
  • 相关文献

参考文献18

二级参考文献58

  • 1刘山亮,郑宏军.短脉冲在色散平坦光纤中传输前后波形、相位和啁啾测量的实验研究[J].中国激光,2006,33(2):199-205. 被引量:13
  • 2刘山亮,郑宏军.光脉冲在标准单模光纤中演化形成孤子的实验研究[J].光学学报,2006,26(9):1313-1318. 被引量:7
  • 3郑宏军,刘山亮.光脉冲特性测量和分析的新方法[J].光通信研究,2007(1):60-63. 被引量:1
  • 4Thomas F. Carruthers, IrI N. Duling III. 10 GHz, 1. 3 ps erbium fiber laser employing soliton pulse shortening[J]. Opt. Lett. , 1996, 21(13): 1927-1929.
  • 5Q. L. Bao, H. Zhang, Y. Wang et al.. Atomic layer graphene as saturable absorber for ultrafast pulsed laser[J]. Adv. Funct. Mater, 2009, 19(19): 3077-3083.
  • 6Z. Q. Luo, M. Zhou, J. Wenga al.. Graphene based passively Q-switched dual-wavelength erbium doped fiber laser[J]. Opt. gett. , 2010, 35(21): 3709-3711.
  • 7K. S, Novoselov, A. K. Geim, S. V. Morozov et al.. Electric field effect in atomically thin carbon films [J]. Science, 2004, 306(5696) : 666-669.
  • 8K. S. Novoselov, A. K. Geim, S. V. Morozov et al.. Two- dimensional gas of massless dirac fermions in graphene [J]. Nature, 2005, 438(7065) : 197-200.
  • 9A. C. Ferrari, J. C. Meyer, V. Scardaci et al.. Raman spectrum of graphene and graphene layers[J]. Phys. Rev. Lett. , 2006, 97(18): 187401.
  • 10D. Popa, Z. Sun, F. Torrisi et al.. Sub 200 fs pulse generation from a graphene mode-locked fiber laser[J]. Appl. Phys. Lett. , 2010, 97(20): 203106.

共引文献73

同被引文献61

  • 1谭中伟,宁提纲,刘艳,陈勇,曹继红,董小伟,马丽娜,简水生.基于啁啾光纤光栅的色散管理[J].物理学报,2006,55(6):2799-2803. 被引量:9
  • 2D Lin, S Alam, P S Teh, et al.. Tunable synchronously-pumped fiber Raman laser in the visible and near-infrared exploiting MOPA-generated rectangular pump pulses[J]. Opt Lett, 2011, 36(11): 2050-2052.
  • 3A Agnesi, E Caracciolo, L Carra, et al.. 150-ps pulse Raman generator pumped by a 1-kHz sub-nanosecond passively Q-switched laser system[J]. Applied Physics B, 2012, 107(3): 691-695.
  • 4A Chamorovskiy, A Rantamki, A Sirbu, et al.. 1.38-μm mode-locked Raman fiber laser pumped by semiconductor disk laser[J]. Opt Express, 2010, 18 (23): 23872-23877.
  • 5Stéphane Randoux, Pierre Suret. Toward passive mode locking by nonlinear polarization evolution in a cascaded Raman fiber ring laser[J]. Opt Commun, 2006, 267(1): 145-148.
  • 6C Aguergaray, D Méchin, V Kruglov, et al.. Experimental realization of a mode-locked parabolic Raman fiber oscillator[J]. Opt Express, 2010, 18(8): 8680-8687.
  • 7D A Chestnut, J R Taylor. Wavelength-versatile subpicosecond pulsed lasers using Raman gain in figure-of-eight fiber geometries[J]. Opt Lett, 2005, 30(22): 2982-2984.
  • 8A Chamorovskiy, J Rautiainen, J Lyytikinen, et al.. Raman fiber laser pumped by a semiconductor disk laser and mode locked by a semiconductor saturable absorber mirror[J]. Opt Lett, 2010, 35(20): 3529-3531.
  • 9S Kivist, T Hakulinen, M Guina, et al.. Tunable Raman soliton source using mode-locked Tm-Ho fiber laser[J]. IEEE Photon Techno Lett, 2007, 19(12): 934-936.
  • 10C E S Castellani, E J R Kelleher, D Popa, et al.. CW-pumped short pulsed 1.12 m Raman laser using carbon nanotubes[J]. Laser Phys Lett, 2013, 10(1): 015101.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部