期刊文献+

光纤型空芯光子晶体光纤低压CO_2气体腔的制备 被引量:7

Preparation of All-Fiber Low-Pressure CO_2 Gas Cell Based on Hollow-Core Photonic Crystal Fiber
原文传递
导出
摘要 报道了一种低损耗小型化高纯度高稳定性的光纤型空芯光子晶体光纤(HC-PCF)低压CO2气体腔。通过采用高压待充气体对HC-PCF进行气体置换、利用高压填充的HC-PCF进行尾纤耦合,确保了腔内填充气体的纯度;通过熔接单模光纤(SMF)作为输入端、经陶瓷插芯套管准直对接多模光纤(MMF)作为输出端,有效降低了插入损耗;通过对HC-PCF的实时监控降压与胶封,制备出压强低至10kPa的光纤型HC-PCF低压CO2气体腔。该HC-PCF低压腔的插入损耗约为3.5dB,且具有长期气密性与稳定性。这种HC-PCF低压气体腔在光纤气体传感、激光稳频、高分辨光谱等方面具有广泛应用前景。 A low-loss, compact, miniaturized and stable low-pressure C02 cell is proposed based on hollow-core photonic crystal fiber (HC-PCF). In order to ensure the gas purity, the HC-PCF is firstly flushed with high-pressure high-purity CO2, and then connected with conventional optical fibers under the high-pressure environment. The insertion loss of HC-PCF gas cell is reduced efficiently by splicing one end of the HC-PCF to single-mode fiber (SMF) and connecting the other end of HC-PCF to multi-mode fiber with ceramic ferrule sleeve. By placing the HC-PCF into a vacuum chamber to decompress its pressure and subsequent sealing process, a HC-PCF low-pressure CO2 gas cell with the pressure less than 10 kPa is obtained. The insertion loss of this gas cell is approximately 3.5 dB, and the good air-tightness and long-term stability are observed. This kind of low-pressure HC-PCF gas cell may find broad applications in optical fiber gas sensing, laser frequency stabilization, and high resolution spectroscopy.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第7期38-42,共5页 Acta Optica Sinica
基金 国家863计划(2011AA030203) 国家自然科学基金(11104282 61275186 61250017)
关键词 光纤光学 全光纤型低压气体腔 空芯光子晶体光纤 微管管流 吸收光谱 fiber optics all-fiber low-pressure gas cell hollow-core photonic crystal fiber micro-pipe flow absorption spectrum
  • 相关文献

参考文献4

二级参考文献32

共引文献21

同被引文献103

  • 1陈乐君,刘玉玲,余飞鸿.光声光谱气体探测器的新发展[J].光学仪器,2006,28(5):86-91. 被引量:13
  • 2顾雯雯,赵建林,崔莉,侯建平.光子晶体光纤气体传感灵敏度的有限差分法分析[J].光子学报,2007,36(1):94-98. 被引量:9
  • 3程同蕾,李曙光,周桂耀,侯蓝田.空芯光子晶体光纤纤芯中的功率分数及其带隙特性[J].中国激光,2007,34(2):249-254. 被引量:15
  • 4J R Petit, J Jouzel, D Raynaud, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735):429-436.
  • 5A Fix, C Budenbender, M Wirth, et al. Optical parametric oscillators and amplifiers for airborne and spaceborne active remote sensing of CO2 andCH4[J]. SHE, 2011, 8182: 818206.
  • 6K Numata, J R Chen, S T Wu, et al. Frequency stabilization of distributed-feedback laser diodes at 1572 nm for lidar measurements of atmospheric carbon dioxide [J]. Appl Opt, 2011, 50(7) : 1047-1056.
  • 7J U White. Long optical paths of large aperture[J]. J Opt Soc Am, 1942, 32(5): 285-288.
  • 8J Altmann, R Baumgart, C Weitkamp. Two-mirror multipass absorption cell[J]. ApplOpt, 1981, 20(6): 995-999.
  • 9P S Light, F Couny, F Benabid. Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photoniccrystalfiber[J]. Opt Lett, 2006, 31(17): 2538-2540.
  • 10P T Marry, J Morel, T Feurer. All-fiber multi-purpose gas cells and their applications in spectroscopy[J]. J Lightwave Technol, 2010, 28(8): 1236-1240.

引证文献7

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部