期刊文献+

基于矩阵填充的相位检索

Phase Retrieval Based on Matrix Completion
原文传递
导出
摘要 相位检索利用直接测量得到的强度分布恢复相位信息,从而重建波函数,是光学和图像处理中的重要研究方向。提出衍射成像中新的利用相位掩模的结构光照明设置,在这种新的设置中,物体和掩模紧贴在一起,并且相互之间的位置可以互换,采用多结构光照明,收集多个不同的衍射图样,在没有信号额外信息情况下求解相位。模拟实验结果表明,这种新的设置形式简单,可以成功地实现相位检索。此外,提出应用托普利兹掩模和循环掩模收集衍射图样以检索相位,它们比二进制掩模需要收集更少的衍射图样;与高斯掩模需要收集的衍射图样数目相当,但是物理上比高斯掩模更易于实现。 Phase retrieval technique using the directly measured intensity distribution to recover phase information and reconstruct the wave function is an important research area of optics and image processing. A new setup for structured illuminations in diffraction imaging is proposed. In the new setup, the object is placed against the mask, and mutual position can be interchanged. Multiple structured illuminations are used to collect several diffraction patterns. In the absence of extra information of the signal, the phase information is obtained. Simulation results show that the new setup is simple, and can achieve the success of phase retrieval. In addition, the Toeplitz mask and circulant mask are used to collect diffraction patterns for phase retrieval. The two masks need to collect fewer diffraction patterns than binary mask does and need to collect diffraction patterns as many as Gaussian mask does. Compared with Gaussian mask, the two masks are easy to realize in physics.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第7期171-177,共7页 Acta Optica Sinica
基金 NSFC-广东联合基金(U1201255) 高等学校博士学科点专项科研基金优先发展领域(20113401130001) 安徽高校省级自然科学研究重点项目(KJ2011A005) 安徽大学青年科学研究基金(KJQN1120)
关键词 图像处理 相位检索 矩阵填充 多结构光照明 相位提升 相位掩模 image processing phase retrieval matrix completion multiple structured illuminations phase lift phase mask
  • 相关文献

参考文献24

  • 1Harrison R W. Phase problem in crystallography[J]. J Opt Soc Am A, 1993, 10(5): 1046-1055.
  • 2Walther A. The question of phase retrieval in optics[J]. Opt Acta: Int J Opt, 1963, 10(1): 41-49.
  • 3J V Corbett. The pauli problem, state reconstruction and quantum-real numbers[J]. Reports on Mathematical Physics, 2006, 57(1): 53-68.
  • 4Miao J W, Ishikawa T, Shen Q, et al.. Extending X-ray crystallography to allow the imaging of noncrystalline materials, cells and single protein complexes[J]. Annual Review of Physical Chemistry, 2008, 59: 387-410.
  • 5Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures [J]. Optik, 1972, 35(2): 237-246.
  • 6Fienup J R. Phase retrieval algorithms: a comparison[J]. Appl Opt, 1982, 21(15): 2758-2769.
  • 7Millane R P. Recent advances in phase retrieval[C]. SPIE, 2006, 6316: 63160E.
  • 8Candès E J, Recht B. Exact matrix completion via convex optimization[J]. Foundations of Computational Mathematics, 2009,9(6): 717-772.
  • 9Keshavan R H, Montanari A, Oh S. Matrix completion from a few entries [J]. IEEE Transactions on Information Theory, 2010,56(6): 2980-2998.
  • 10Amit Y, Fink M, Srebro N, et al.. Uncovering shared structures in multiclass classification[C]. Proceedings of the 24th International Conference on Machine Learning, 2007. 17-24.

二级参考文献61

  • 1Candès E. J., Romberg J., Tao T.. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509.
  • 2Donoho D. L.. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 3Candès E. J.. Compressive sampling[C]. Proceedings of the International Congress of Mathematicians, 2006. 1433-1452.
  • 4Donoho D. L., Tsaig Y., Starck J. L.. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit [R]. Stanford University Technical Report, 2006. 1-6.
  • 5Needell D., Vershynin R.. Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit [J]. Foundations of Computational Mathematics, 2009, 9(3): 317-334.
  • 6Chartrand R.. Exact reconstruction of sparse signals via nonconvex minimization[J]. IEEE Signal Processing Letters, 2007, 14(10): 707-710.
  • 7Chartrand R., Wotao Y.. Iteratively reweighted algorithms for compressive sensing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2008. 3869-3872.
  • 8Blumensath T., Davies M. E.. Iterative thresholding for sparse approximations[J]. J. Fourier Analysis and Applications, 2008, 14(5): 629-654.
  • 9Nagesh P., Li B. X.. Compressive imaging of color images[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2009. 1261-1264.
  • 10Majumdar A., Ward R. K.. Compressed sensing of color images[J]. Signal Processing, 2010, 90(12): 3122-3127.

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部