期刊文献+

基于近邻嵌入逐级放大的图像超分辨率重建

Super-Resolution Image Reconstruction Based on Stepwise Magnification of Neighbor Embedding
下载PDF
导出
摘要 针对基于近邻嵌入的图像超分辨率重建,提出带约束的逐级放大策略来提高近邻保持率,改进重建效果,并对各级放大的图像用迭代反向投影约束进行修正,减少学习过程中可能出现的误差,保证每一级的解向着正确的方向演化.此外,为充分利用测试图像本身的信息,将由测试图像得到的在线训练集与由训练图像数据库得到的离线训练集串联,构成联合训练集,进一步改进算法的性能.实验表明,与现有的一些算法相比,文中算法无论在视觉效果还是客观评价上都获得了更好的结果. Proposed in this paper is a constrained stepwise magnification strategy for the super-resolution image reconstruction based on the neighbor embedding, which is used to increase the neighborhood-preserving rate and improve the reconstruction effect. Then, the iterative back-projection constraint is used to modify the magnified image in each step, which decreases the errors that may occur during the learning procedure and makes the solution of each step evolve in a correct direction. Moreover, in order to take full advantage of the information of the test image, a joint training set is constructed by concatenating the on-line training set learned from the test image and the offline training set learned from the training image database, and is used to further improve the algorithm performance. Experimental results show that, as compared with some existing algorithms, the proposed algorithm helps to obtain better visual effect and more objective evaluation results.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第5期55-60,共6页 Journal of South China University of Technology(Natural Science Edition)
基金 NSFC-广东省联合基金资助项目(U1035004) 国家自然科学基金青年科学基金资助项目(61003270) 国家自然科学基金面上项目(61070090) 广东省工业科技计划项目(2009B030803004) 华南理工大学中央高校基本科研业务费专项资金重点资助项目(2012ZZ0066) 广东省重大科技专项(2010A080402005) 广东省自然科学基金博士启动项目(10452840301004638) 广州市科技支撑重点项目(2012J4300030)
关键词 图像处理 超分辨率重建 近邻嵌入 逐级放大 迭代反向投影 联合训练集 image processing super-resolution reconstruction neighbor embedding stepwise magnification iterative back projection joint training set
  • 相关文献

参考文献2

二级参考文献13

  • 1Farsiu S, Robinson D, Elad M, et al. Fast and robust multi-frame super-resolution [ J ]. IEEE Transactions on Image Processing,2004,13(10) : 1327-1344.
  • 2l,i X,Hu Y ,Gao X,et al. A multi-frame image super-resolution method [J]. Signal Processing,2010,90(2):405-414.
  • 3Zhang X, Lain E Y, Wu E X, et al. Application of Tikhonov regularization to super-resolution reconstruction of brain MRI image [ J ]. Lecture Notes in Computer Science, 2008,4987 : 51 - 56.
  • 4Baker S,Kanade T. Limits on super-resolution and how to break them [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002,24 ( 9 ) : 1167-1183.
  • 5Freeman W T, Pasztor E C, Carmichael O T. Learning lowlevel vision [ J ]. International Journal of Computer Vision,2000,40( 1 ) :25-47.
  • 6Chang H, Yeung D Y, Xiong Y. Super-resolution through neighbor embedding [ C ]//Proeeedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D C : IEEE ,2004:275-282.
  • 7Fan W, Yeung D Y. Image hallucination using neighbor embedding over visual primitive manifolds [ C ] //IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis : IEEE,2007 : 1 -7.
  • 8Chan T M, Zhang J, Pu J, et al. Neighbor embedding based super-resolution algorithm through edge detection and feature selection [ J ]. Pattern Recognition Letters, 2009,30(5) :494-502.
  • 9Sun J, Sun J, Xu Z, et al. Image super-resolution using gradient profile prior [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage: IEEE, 2008 : 1- 8.
  • 10Tai Y, Liu S, Brown M, et al. Super resolution using edge prior and single image detail synthesis [ C ] //IEEE Conference on Computer Vision and Pattern Recognition. San Francisco: IEEE ,2010 :2400-2407.

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部