期刊文献+

多目标分解随机粒子群优化算法及其在直线电机优化设计中的应用 被引量:10

A multi-objective decomposition-based stochastic particle swarm optimization algorithm and its application to optimal design for linear motor
下载PDF
导出
摘要 本文提出了一种多目标分解随机粒子群优化算法(MDSPSO).该算法优化过程中,所有粒子按各自固定的权重向量,采用改进Tchebycheff分解方法,将求解多目标非支配解问题转化为求解多个单目标最优解问题;而后每个粒子在以自身位置、个体历史最优参考位置及群体最优参考位置的几何中心为中心,以中心到自身位置为半径的区域内,随机生成一个新的起始位置,并参考当前的速度更新下一时刻的位置.通过对测试函数多次计算得到的数据进行统计分析,表明MDSPSO的收敛性和多样性均优于另外3种对比算法.最后针对直线电机磁路复杂、有限元计算费时的问题,使用神经网络拟合直线电机结构参数与性能的关系作为优化设计的模型,应用MDSPSO算法,优化结构参数.实际测试结果表明,优化后的直线电机推力大、效率高,同时有效控制了其推力波动和生产成本. This article proposes a multi-objective decomposition stochastic particle swarm optimization (MDSPSO) algorithm. In MDSPSO, every particle has a weighted vector constantly. Then, an improved Tchebycheff decomposition method is applied to decompose the multi-objective problem into some single-objective problems. The reference position of every particle is uniformly generated in the zone with the center which is the geometrical center of its current position, the best previous reference position as well as the swarm best reference position. The radius of this zone is the distance from the center to its current position. Then the particle is updated to the new position according to the reference position and its current velocity. The comparisons with the decomposition-based multi-objective particle swarm optimizer (dMOPSO), a multiobjective evolutionary algorithm based on decomposition (MOEA/D), and nondominated sorting genetic algorithm II (NSGA-II) show that the solutions of MDSPSO can be dominated at least with the best diversity. To reduce the compu, tational time by finite element analysis for optimizing the structure parameters of linear motor, artificial neural network is used as the model to evaluate the performance. Finally, MDSPSO is applied to optimize four objectives simultaneously. The practical result is shown that the optimized linear motor has an increased thrust, improved efficiency, reduced fluctuation and manufacturinz cost.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2013年第6期693-701,共9页 Control Theory & Applications
基金 国家杰出青年科学基金资助项目(60925011) 国家自然科学基金国家重大国际(地区)合作研究项目(61120106010)
关键词 多目标优化 改进Tchebycheff分解方法 随机粒子群优化算法 直线电机 multi-objective optimization improved Tchebycheff decomposition method stochastic particle swarmoptimization linear motor
  • 相关文献

参考文献13

  • 1ZHOU A M, QU B Y, LI H, et al. Multi-objective evolutionary algo- rithms: a survey of the state of the art [J]. Swarm and Evolutionary Computation, 2011, 1(2011): 32 - 49.
  • 2REYES-SIERRA M, COELLO COELLO C A. Multi-objective par- ticle swarm optimizers: a survey of the state-of-the-art [J]. Interna- tional Journal of Computational Intelligence Research, 2006, 2(3): 287 - 308.
  • 3冯琳,毛志忠,袁平.改进多目标粒子群算法及其在电弧炉供电优化中的应用[J].控制理论与应用,2011,28(10):1455-1460. 被引量:4
  • 4MARTINEZ S Z, COELLO COELLO C A. A multi-objective parti- cle swarm optimizer based on decomposition [C] //Proceedings of the 13th Annual Conference on Genetic and Evolutionary Computation. New York: ACM, 2011, 7:69 - 76.
  • 5江友华,廖代发,唐忠.混合有源滤波器多目标优化设计[J].控制理论与应用,2010,27(7):916-922. 被引量:6
  • 6张静,王万良,徐新黎,介婧.混合粒子群算法求解多目标柔性作业车间调调度度问题[J].控制理论与应用,2012,29(6):715-722. 被引量:38
  • 7GIERAS J F, PIECH Z J, TOMCZUK B. Linear Synchronous Mo- tors: Transportation and Automation Systems [M]. 2nd edition. New York: CRC Press, 2011.
  • 8ASHABANI M, MOHAMED Y, MILIMONFARED J. Optimum design of tubular permanent-magnet motors for thrust characteris- tics improvement by combined taguchi-neural network approach [J]. IEEE Transactions on Magnetics, 2010, 46(12): 4092 - 4100.
  • 9LI L, MA M, CHEN Q. Analysis and design of moving-magnet- type linear synchronous motor for electromagnetic launch system [J]. IEEE Transactions on Plasma Science, 2011, 39(1): 121 - 126.
  • 10LI H, ZHANG Q E Multi-objective optimization problem with com- plicated Pareto sets, MOEA/D and NSGA-II [J]. IEEE Transaction on Evolutionary Computation, 2009, 13(2): 284 - 302.

二级参考文献47

共引文献45

同被引文献89

  • 1陈一秀,王永初.直线伺服系统的鲁棒保性能控制研究[J].中国电机工程学报,2006,26(24):174-178. 被引量:13
  • 2林家春,李伟,赵彤,王先逵,刘成颖.永磁直线同步电动机推力波动抑制策略[J].控制理论与应用,2007,24(3):449-452. 被引量:16
  • 3段海滨.蚁群算法原理及应用[M].北京:科学出版社,2005.12.
  • 4刘少伟,王洁.一种改进的蚁群算法在TSP问题中的应用研究[J].计算机仿真,2007,24(9):155-157. 被引量:10
  • 5史峰,王辉,郁磊,等.MATLAB智能算法30个案例分析[M].北京:北京航空航天大学出版社,2010.
  • 6ZHANG D L, CHEN Y P, ZHOU Z D. Robust adaptive motion con- trol of permanent magnet linear motors based on disturbance com- pensation [J]. Electric Power Application, 2007, 1(4): 543 - 548.
  • 7CHRISTIAN B. Ant colony optimization introduction and recent trends [J]. Physics of Life Reviews, 2005, 2(4): 353 - 373.
  • 8GALATI D G, SIMAAN M A. Effectiveness of the nash strategies in competitive multi-team target assignment problems [J]. Transactions of Aerospace and Electronic Systems, 2007, 43(1): 126 - 134.
  • 9ATHANS M. Command and control (C2) theory: a challenge to control science [J]. IEEE Transactions on Automatic Control, 1987, 32(4): 286 - 293.
  • 10XIN B, CHEN J, PENG Z, et al. An efficient rule-based constructive heuristic to solve dynamic weapon-target assignment problem [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A: Sys- tems and Humans, 2011, 41(3): 598 - 606.

引证文献10

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部