期刊文献+

一维Theta神经网络中扰动后多放电行波解存在性 被引量:1

Regular traveling waves after perturbatiom in a one-dimensional network of Theta neurons
下载PDF
导出
摘要 主要研究一维Theta神经元网络的微分方程模型,从神经元生理运动特点和微分方程入手对该网络模型进行研究.对模型中的输入形式进行简化,给输入一个扰动,证明了扰动后多放电行波解的存在性. The model of differential equations in a one-dimensional network of Theta neurons is discussed. The prob- lem is studied from two aspects., the physiological movement characteristics of neurons and the model of differential equations. By setting assumption on the form of input, this paper proves that under small extra perturbation, there exists two traveling wave solutions which spike more than one time.
出处 《浙江大学学报(理学版)》 CAS CSCD 2013年第4期391-395,共5页 Journal of Zhejiang University(Science Edition)
基金 内蒙古教育厅自然科学基金资助项目(NJ09138)
关键词 Theta模型 行波解 突触耦合 扰动 打靶法 Theta neuron model traveling wave solution synaptic coupling perturbation shooting method
  • 相关文献

参考文献5

  • 1REMUS O, JONATHAN R, BARD E. Regular trav- eling waves in a one-dimen-sional network of Theta neurons[J']. SIAM d Appi Math, 2002,62 (4) : 1197- 1221.
  • 2GAO Fei-fei, HAO Dun-yuan. The study of modeling differential equations in a one-dimensional network of Theta neurons-The existence of traveling wave solution [J]. Journal of Inner Mongolia University, 2007, 38 (4) :361-365.
  • 3ERMENTROUT G B. The analysis of synaptically generated traveling waves[J]. J Comp Neurosei, 1998, 5 : 191-208.
  • 4ERMENTROUT G B. Type I membranes, phase re- setting curves, and synchrony[J]. Neural Commput, 1996,8:979-1001.
  • 5ERMENTROUT G B , KOPELL N. Parabolic burst- ing in an excitable system coupled with a slow oscilla- tion[J]. SlAM J Appl Math, 1986,46(2) : 233-253.

同被引文献5

  • 1高菲菲,郝敦元.一维Theta神经网络微分方程模型的研究——多放电行波解的存在性[J].内蒙古大学学报(自然科学版),2007,38(4):361-365. 被引量:1
  • 2Remus Osan, Jonathan Rubin, and Bard Ermentrout. Regular Traveling Waves in A One-Dimen-Sional Network of Theat Neurons, SIAM J.APPL.MATH., 2002.62.(4) : 1197~1221.
  • 3G.B.Ermentrout. The Analysis of Synaptically Generated Traveling Waves. J.Comp. Neurosci. ,5 (1998):191~208.
  • 4G.B.Ermentrout. Type I Membranes , Phase Resetting Curves, and Synchrony. Neural Commput, 8 (1996) : 979- 1001.
  • 5G.B.Ermentrout and N.Kopell, Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation, SIAM J.APPL.MATH., 1986,46 (2) :233-253.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部