期刊文献+

高维空间下烟叶质量相似性度量方法研究 被引量:6

Similarity Measurement Method of Tobacco Leaves In High Dimensional Space
下载PDF
导出
摘要 为判断高维数据空间下烟叶质量相似性,本研究提出了一种基于核变换和测地距离线的局部线性嵌入的相似性度量计算方法,并以450个复烤片烟样品质量分布特征为材料进行特征分析与相似性度量实验验证。结果表明,主成分分析(PCA)的线性降维方法虽能体现原料质量数据内在的非线性特征,但样本点重叠较多,而测地线局部线性嵌入降维方法则能很好表征样本点的分类能力和对领域数据的适用性;在相似性度量时,嵌入映射方法在同产区、同部位、相近等级类烟叶搜索到的数量大于在原始数据集和PCA变换后数据集上搜索得到的结果,该方法能够有效解决传统原料相似性度量方法中要求低维空间保距映射的问题。 In this paper, locally linear embedding algorithm in manifold learning based on kernel transformation and the geodesic distance was proposed for judging the quality of tobacco leaf similarity in high-dimensional data space. This method was verified through feature analysis and similarity measure experiment of 450 tobacco grilled piece samples. The results showed that local linear embedded method based on geodesics distance had very good characteristic of the sample classification ability and the applicability of field data. PCA method could reflect the inherent nonlinear characteristics of data quality of raw material, but there existed the more overlap of sample points. In the similarity measurement, the searching tobacco numbers through this method in the same producing area, the same position and the similar grade were greater than the number of tobacco leaf in original data set and that of PCA transform. The method can effectively solve the isometric problem in low-dimensional space to similarity measure.
出处 《中国烟草科学》 CSCD 2013年第3期84-88,共5页 Chinese Tobacco Science
关键词 相似性度量 局部线性嵌入 测地线距离 核方法 similarity measure local linear embedded geodesic distance kernel transformation
  • 相关文献

参考文献10

  • 1刘伟,徐少平,袁军,等.基于差曲线信息熵的光谱相似性测度改进方法[J].测绘通报,2010(增刊):239-242.
  • 2Zhang J, Sokhansanj S, Wu S, et al. A trainable grading system for tobacco leaves[J]. Computers and Electronics in Agriculture, 1997. 16(3): 231-244.
  • 3邵岩,宋春满,邓建华,路鑫,许国旺,周清明.云南与津巴布韦烤烟致香物质的相似性分析[J].中国烟草学报,2007,13(4):19-25. 被引量:81
  • 4杜文,易建华,谭新良,刘金云.基于近红外光谱的烟叶SIMCA模式识别[J].中国烟草学报,2009,15(5):1-5. 被引量:16
  • 5Berchtold S, Keim D, Kriegel H P, The X-Tree: An Index Structure for High-Dimensional Data[J]. In Proceedings of the 22nd International Conference on Very Large Data Bases, Bombay. 1996: 28-39.
  • 6Weber R, Schek H J, Blott S, A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces[J]. In Proceedings of the 24th International Conference on Very Large DataBases. New York. 1998:194-205.
  • 7Sam Roweis, Lawrence Saul. Nonlinear dimensionality reduction by locally linear embedding[M]. Science, 2000, 290(5500): 2323-2326.
  • 8Tenenbaum J B, Silva V de, Langford J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000. 290(5500): 2319-2323.
  • 9常爱霞,杜咏梅,付秋娟,牛宝权,王树声,刘洪祥,温亮,谭青涛,刘勇.烤烟主要化学成分与感官质量的相关性分析[J].中国烟草科学,2009,30(6):9-12. 被引量:110
  • 10李章海,王能如,王东胜,朱显灵,周慧玲.不同生态尺度烟区烤烟香型风格的初步研究[J].中国烟草科学,2009,30(5):67-70. 被引量:76

二级参考文献36

共引文献277

同被引文献42

引证文献6

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部