期刊文献+

移动互联网的业务访问特性 被引量:16

Revealing Service Visit Characteristics in Mobile Internet
下载PDF
导出
摘要 随着移动网络的快速发展和智能手机的不断普及,移动互联网的用户规模与日剧增,各类业务应用也层出不穷.为分析移动互联网中各类业务的访问特性,文中首先引入复杂网络的研究方法,建立了一个加权用户-业务二分网络分析模型;然后对现有移动互联网的主要业务应用进行了分类,并利用从某移动通信运营商的互联网网关上采集的2010年和2011年部分数据集,基于该模型从用户访问兴趣、业务点击量特性、业务流量特性、访问关联性等方面分析了移动互联网的业务访问特性,并比较了用户访问行为的变化.结果发现:门户网站、搜索引擎、社交网站和网络文学是用户访问的主要业务类型;用户访问兴趣范围服从指数分布,用户访问的兴趣强度服从幂律分布;点击量大的网站具有流量相似性而点击量小的网站则没有,但当点击量达到一定规模时则会呈现出流量相似性;在访问关联性方面,门户网站和搜索引擎是最容易被关联访问的业务类型,其次是电子邮箱和社交网站. With the rapid development of mobile networks and popularization of smart phones, the scale of mobile Internet users is explosively growing, and various kinds of services have emerged. To investigate the characteristics of user access of different kinds of services, we set up a weighted user-service bipartite network model. Before using our model to analyze the user access characteristics, we categorize the main services in mobile Internet into twelve types. Then, based on the real data sets respectively collected in 2010 and 2011 from a WAP gateway of one main Mobile Telecom Carrier in Chongqing province, we target to expose the characteristics of service visit styles from four aspects: access interest, clicks, traffic features, and access rele- vance. We have several interesting findings. (a) the top four service categories being visited are the portal, search, online social networks and e book~ (b) the number of service categories that user visited well fits exponential distribution, while the user visiting intensity fits power law~ and (c) the volume of traffics on websites whose clicks are high would show strong self-similarity, but those having low clicks would not. However, when the volume of clicks on a website reaches a certain high level, it would show the self-similarity. Moreover, (d) with respect to access rele- vance, which means the users' access transfers among different service categories, we find that the portal and search are the top two kinds of services which tightly correlated with other service categories, followed by the e-mail and online social networks.
出处 《计算机学报》 EI CSCD 北大核心 2013年第7期1388-1398,共11页 Chinese Journal of Computers
基金 国家"九七三"重点基础研究发展规划项目基金(2012CB315803) 重庆自然科学基金项目(CSTC.2012jjB40008 CSTC.2012jjA1654)资助
关键词 移动互联网 用户行为 二分网络 mobile Internet user behavior bi-partite network
  • 相关文献

参考文献25

  • 1LuoJunZhou,WuWenJia,YangMing.MobileInternet:Terminaldevices,networkandservices.ChineseJournalofComputers,2011,34(11):20292051.
  • 2罗军舟,吴文甲,杨明.移动互联网:终端、网络与服务[J].计算机学报,2011,34(11):2029-2051. 被引量:273
  • 3CNNIC.29thstatisticalreportoninternetdevelopmentinChina.ChinaInternetNetworkInformationCenter(CNNIC),2011.
  • 4第29次中国互联网络发展状况统计报告.中国互联网络信息中心(CNNIC),2011.
  • 5LiFei,GuoL,ShenBo,ChenSongQing.Aserver'sperspectiveofInternetstreamingdeliverytomobiledevices//ProceedingsoftheINFOCOM.Orlando,USA,2012:13321340.
  • 6KeralapuraR,NucciA,ZhangZhiLi,GaoLiXin.Profilingusersina3Gnetworkusinghourglasscoclustering//ProceedingsoftheMobiCom.Chicago,Illinois,USA,2010:341352.
  • 7GhoshA,JanaR,RamaswamiV,etal.ModelingandcharacterizationoflargescaleWiFitrafficinpublichotspots//ProceedingsoftheINFOCOM.Shanghai,China,2011:29212929.
  • 8ChenTzungShi,ChouYenSsu,ChenTzungCheng.Miningusermovementbehaviorpatternsinamobileserviceenvironment.IEEETransactionsonSystems,Man,andCybernetics,2012,42(1):87101.
  • 9ShafiqMZ,etal.Characterizinggeospatialdynamicsofapplicationusageina3Gcellulardatanetwork//ProceedingsoftheINFOCOM.Orlando,USA,2012:13411349.
  • 10LuEHC,LeeWC,TsengVSM.Aframeworkforpersonalmobilecommercepatternminingandprediction.IEEETransactionsonKnowledgeandDataEngineering,2012,24(5):769782.

二级参考文献177

  • 1李?,山秀明,任勇.具有幂率度分布的因特网平均最短路径长度估计[J].物理学报,2004,53(11):3695-3700. 被引量:18
  • 2王磊,周淑华,袁坚,任勇,山秀明.虚拟网络行为对互联网整体特性的影响[J].物理学报,2007,56(1):36-42. 被引量:16
  • 3Wang L , Ren Y , Li Y P, et al. Measurement and statistics of application business in complex internet[ C]. Proc of International Conference on Complex Sciences: Theory and Applications, Shanghai, China ,2009:400-410.
  • 4Wang L, Ren Y, Wang Y, et al. Traffic localizing strategy for peer-to-peer systems[ C ]. Proc of IEEE Computer Society World Congress on Computer Science and Information Engineering, Los Angeles, USA,2009, 2:409 -413.
  • 5Barabasi A-L,Albert R. Emergence of scaling in random networks[ J]. Sience. 1999,286(5439) :509 -512.
  • 6Xie H Y, Yang Y R, Krishnamurthy A, et al. P4P: provider portal for applications [ DB/OL]. [2010 -09 -20]. http://ccr. sigcomm. org/online/? q = node/402.
  • 7Internet world stats [ DB/OL ]. [ 2010 - 09 - 29 ]. http ://internetworld stats. com/stats, htm.
  • 8Yuan J, Mills K. A Cross-correlation based method for spatial-temporal traffic analysis [ J]. Performance Evaluation, 2005, 61(2 -3): 163 -180.
  • 9Liu F, Shan X M, Ren Y, et al. Phase transition and 1/f noise in a computer network model[J]. Physiea A, 2003, 328(3 - 4) : 341 -350.
  • 10Li Y P, Huang Y H,Wang L, et al. The nonlinear mechanism of phase transition in computer network[ DB/OLI. [ 2010 -09 - 20]. http ://adsabs. harvard. edu/abs/2009cosc. conf.. 560Y.

共引文献278

同被引文献131

引证文献16

二级引证文献196

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部