期刊文献+

镍电解检测机械手神经网络死区补偿控制

Dead-Zone Compensation Control with RBFNN for Nickel Electro-Winning Monitor Manipulator
下载PDF
导出
摘要 镍电解三段净化工序中传感器检测信号种类复杂,现场物化条件差,提出应用机械手实现镍电解净化过程中检测的自动化。建立了机械手的广义运动模型和死区描述模型,在此基础上实现了径向基神经网络(Radial Basis Function Neural Networks,RBFNN)死区补偿控制器设计,系统有系统估计和死区补偿两个RBFNN实现,给出了系统估计和死区补偿自适应率设计。仿真结果显示,该系统能实现机械手的位置跟踪和死区补偿,提高镍电解的检测自动化水平。 The monitor device with manipulator was proposed based on three-segment purifying process in nickel electro winning which has complex sensors and bad physical-chemical conditions.The dynamic model of manipulator and dead zone was established;also compensate control with RBFNN strategy was applied to this repeat system,and the compensator was designed with dead zone compensation and system estimation,and the adaptive law was designed for this control system.The simulation shows RBFNN compensate control have good trajectory tracking ability and then the monitor automation of purifying process in nickel electro-winning realized.
出处 《机械设计与制造》 北大核心 2013年第3期208-210,共3页 Machinery Design & Manufacture
基金 河南省科技厅科技攻关计划资助项目(122102210416 112102210339)
关键词 机械手 死区 神经网络 自适应率 仿真 Robotic Manipulator Dead-Zone Neural Networks Adaptive Law Simulation
  • 相关文献

参考文献10

二级参考文献29

  • 1石德松,邓文清.硫化氢除铜工艺设备的改进[J].重冶科技,1993(10):6-9. 被引量:2
  • 2李习纯.络合电位滴定法连续测定矿石中铜、钴和镍[J].冶金分析,1994,14(2):41-42. 被引量:6
  • 3北京有色冶金设计研究总院等.重有色金属冶炼设计手册(铜镍卷)[M].北京.冶金工业出版社.1999,624-646.
  • 4金川有色金属公司.世界镍钴生产厂家及公司概况[R].金川,金川公司技术中心.1999.40-283.
  • 5[1]HUNT K J, SBARBARO D, ZBIKOWSKI R, et al. Neural networks for control systems-a survey [J]. Automatica, 1992, 28(6): 1083-1112.
  • 6[2]LU S W, BASAR T. Robust nonlinear system identification using neural-network models [J]. IEEE Trans on Neural Networks, 1998, 9(3): 407-429.
  • 7[3]LIAO T L. Adaptive robust neural tracking control of a class of unknown nonlinear systems[J]. Int J of Systems Science, 1998, 29(7): 731-743.
  • 8[4]CHEN F C, LIU C C. Adaptively controlling nonlinear continuous-time systems using multilayer neural networks [J]. IEEE Trans on Automatic Control, 1994, 39(6):1306-1310.
  • 9[5]BEHTASH S. Robust output tracking for non-linear systems[J]. Int J Control, 1990, 51(6) :1381-1407.
  • 10[6]LIAO T L. Adaptive robust neural tracking control of a class of unknown nonlinear [J]. Int J Systems Science, 1998, 29(7): 731-743.

共引文献78

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部