期刊文献+

基于EEMD和变尺度随机共振的轴承故障诊断 被引量:2

Bearing Fault Diagnosis Based on EEMD and STSR
下载PDF
导出
摘要 提出了一种基于集合平均经验模式分解(EEMD)和变尺度随机共振(STSR)的滚动轴承故障提取方法。首先通过EEMD对含噪振动信号进行自适应抗混分解,得到不同频带的本征模态函数(IMF);然后将不同频带的IMF作为双稳系统的输入,通过变步长数值算法和调节非线性双稳系统的结构参数来提取微弱低频故障特征信号;最后运用切片双谱对双稳系统的输出进行后处理。仿真分析验证了STSR的特性,通过对强噪声背景下的滚动轴承实测信号分析表明,该方法充分利用高斯白噪声,能有效提取滚动轴承微弱故障特征。 A fault feature extraction method of rolling bearing based on ensemble empirical mode decomposition (EEMD) and scale-transformation stochastic resonance(STSR) is proposed.Firstly,the vibration signal with noise is adaptively anti-aliasing decomposed by EEMD to conduct intrinsic mode function(IMF) of different frequency bands.Then making the IMFs as the input of bi-stable system,the low frequency fault features signal is extracted by the step-changed numberical algorithm and the adjustment of the bi-stable system parameters. Finally,slice bi-spectrum is adopted to postprocess the output of the bi-stable system.Simulation analysis is performed to prove the characteristics of STSR,the analysis on measured signal of the rolling bearing in strong background noise shows that the approach can extract the weak fault features of rolling bearing with the full use of Gaussian white noise successfully.
出处 《测控技术》 CSCD 北大核心 2013年第7期15-18,22,共5页 Measurement & Control Technology
基金 国家自然科学基金资助项目(10972207)
关键词 EEMD STSR 滚动轴承故障 切片双谱 EEMD STSR fault of rolling bearing slice bi-spectrum
  • 相关文献

参考文献7

  • 1Wu Z H, Huang N E. Ensemble empirical mode decomposit- sion : a noise-assisted data analysis method [ J ]. Advances in Adaptive Data Analysis,2009,1 ( 1 ) : 1 -41.
  • 2Benzi R, Sutera A, Vulpiani A. The mechanism of stochastic resonance [ J ]. Journal of Physics A : Mathematical and Gen- eral, 1981,14( 11 ) :453 -457.
  • 3冷永刚,王太勇,秦旭达,李瑞欣,郭焱.二次采样随机共振频谱研究与应用初探[J].物理学报,2004,53(3):717-723. 被引量:57
  • 4Huang N E, Shen Z, Long S R, et al. The empirical mode de- composition and the Hilbert spectrum for nonlinear and non- stationary time series analysis [ J ]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998,454 ( 1971 ) : 903 - 995.
  • 5Lei Y G, He Z J, Zi Y Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery [ J ]. Mechanical Systems and Signal Processing,2009,23 (4) :1327 -1338.
  • 6陈略,訾艳阳,何正嘉,成玮.总体平均经验模式分解与1.5维谱方法的研究[J].西安交通大学学报,2009,43(5):94-98. 被引量:70
  • 7冷永刚,王太勇,李瑞欣,彭永胜,邓学欣.变尺度随机共振用于电机故障的监测诊断[J].中国电机工程学报,2003,23(11):111-115. 被引量:53

二级参考文献27

  • 1卢志恒,林建恒,胡岗.随机共振问题Fokker-Planck方程的数值研究[J].物理学报,1993,42(10):1556-1566. 被引量:21
  • 2李崇晟,屈梁生.齿轮早期疲劳裂纹的混沌检测方法[J].机械工程学报,2005,41(8):195-198. 被引量:13
  • 3WU Zhaohua, HUANG Norden E. A study of the characteristics of white noise using the empirical mode decomposition method [J]. Proc R Soc Lond: A, 2004,460:1597-1611.
  • 4WU Zhaohua, HUANG Norden E. Ensemble empirical mode decomposition: a noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009,1(1) :1-41.
  • 5HUANG Norden E, ZHENG Shen, STEVEN R L. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proc R Soc Lond.. A, 1998, 454:903- 995.
  • 6FLANDRIN P, CONCALVES G, RILLIN G. Empirical mode decomposition as a filter bank [J]. IEEE Signal Processing, 2004,11 (2) : 112-114
  • 7[1]Gammaitoni L et al 1998 Rev.Mod.Phys.70 23
  • 8[2]Bulsara A R and Gammaitoni L 1996 Phys.Today 49 39
  • 9[3]Godivier X and Chapeau-Blondeau F 1997 Signal Proc.56 293
  • 10[6]Nicolis G and Prigogine I 1997 Self-Organization in Nonequilibrium System(New York:Wiley)

共引文献168

同被引文献16

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部