期刊文献+

高分辨率详普查结合型遥感成像技术 被引量:1

High-resolution Imaging Technique Combining Capabilities of Coarse and Fine Reconnaissance
下载PDF
导出
摘要 首先介绍了详普查相结合的空间光学观测技术在空间观测领域的重要应用,总结了详普查空间光学观测的实现方法和发展现状。分析了变形镜变焦的理论设计思路,提出了采用变形镜结合光学杠杆作用实现无运动部件变焦光学系统的设计方案,设计了一个变焦比为4的大视场四反射变焦光学系统。通过视场离轴消除了中心遮拦,其中第三镜为变形镜;通过控制其曲率的变化来实现系统焦距从625mm到2.5m的变换;为了分担变形镜所承担的光焦度,采用了分离主镜的光学设计方案,最终光学系统的成像性能达到衍射极限。同时,研制了缩比系统进行了关键技术原理性试验验证,并成功实现了基于无运动部件的4倍变倍成像效果。该技术的研究对于在未来构建新型的高分辨率详普查结合型有效载荷有一定借鉴作用。 The important applications of space optical observation technologies based on the general and detailed investigation imaging are first introduced, and the internal and overseas optical observation methods and current status of development are summarized. Then, the design theory for zoom optical systems using deformed mirrors (DM) is introduced, and a zoom optical system design method based on DMs without any mechanical moving parts is put forward. Finally, a four-mirror reflective zoom optical system with large field-of-view (FOV) is designed, with the zoom ratio 4. The central obscuration is eliminated by making the FOV non-coaxial. The third mirror is DM, the curvature of which is controlled to make the focal length change from 2.5m to 10m. The separate primary mirrors for the different focal positions are used in order to reduce the optical-power changing range of DM. The performance of the final optical system is diffraction limited. At the same time, the experiments have been carried out and the results demonstrate the effectiveness of the deformable mirror based on optical zooming without moving elements involved.
出处 《航天返回与遥感》 2013年第3期9-15,共7页 Spacecraft Recovery & Remote Sensing
基金 国家重大科技专项工程
关键词 变焦距 变形镜 分离主镜 光学杠杆 试验验证 空间遥感 changeable focal length deformable mirror segmented primary mirror optical leveraging experimental demonstration space remote sensing
  • 相关文献

参考文献7

  • 1岳涛,李博,陈晓丽,周峰.空间光学发展现状和未来发展[J].航天返回与遥感,2011,32(5):1-9. 被引量:25
  • 2张新,付强.空间光学系统技术发展探讨[J].航天返回与遥感,2011,32(5):29-35. 被引量:5
  • 3Johnson R B,Hadaway J B,Burleson T.All-reflective Four-element Zoom Telescope:Design and Analysis[J].SPIE,1990,1354:669-675.
  • 4Kristof Seidl,Katja Richter,Jens Knobbe,et al.Wide Field-of-view All-reflective Objectives Designed for Multispectral Im-age Acquisition in Photogrammetric Applications[C].Proceeding of SPIE,2011,8172:817210-1-817210-10.
  • 5Kristof Seidl,Jens Knobbe,Heinrich Gruger.Design of an All-reflective Unobscured Optical-power Zoom Objective[J].Ap-plied Optics,2009,48(21):4097-4107.
  • 6Johnson R B.Unobscured Reflective Zoom Systems[J].SPIE,2539:225-218.
  • 7Johnson R B,Mann A.Evolution of a Compact,Wide Field-of-view,Unobscured,All-reflective Zoom Optical System[J],SPIE,3061:370-375.

二级参考文献18

  • 1孙来燕,马兴瑞,肖晶,郭建宁.中国资源卫星应用事业发展15年[J].中国科技论坛,2007(2):3-4. 被引量:2
  • 2金声震.空间太阳望远镜及项目进展[C].中国天文望远镜及仪器学术讨论会,2002.
  • 3中国科学院空间领域战略研究组.中国至2050年空间科技发展路线图[M].北京:科学出版社,2009.
  • 4潘君骅.光学非球面的设计、加工和检测[M].北京:科学出版社,1994.
  • 5Gardneral J P, Mathera J C, Clampina M. Science with the James Webb Space Telescope[J]. Proc.SPIE, 2006, 6265(6265n):1-12.
  • 6Zinn J W, Jones G W. Kepler Primary Mirror Assembly: FEA Surface Figure Analyses and Comparison to Metrology [J]. Appl Optics Proe.SPIE, 2007, 6671(667105):1-11.
  • 7Koch D, Borueki W, Webster L. Kepler:. a Space Mission to Detect Earth-class Exoplanets[J]. Proc. SPIE, 2006, 6265:599-607.
  • 8Borucki W J, Koch D G, Lissauer J J. The Kepler Mission: A Wide Field of View Photometer Designed to Determine the Frequency of Earth-Size Planets around Solar-Like Stars[J]. Proc.SPIE, 2003, 4854:129-140.
  • 9Lampton M L, Sholl M J, Levi M E. Off-Axis Telescopes for Dark Energy Investigations[J]. Proc.SPIE, 2010, 7731(77311G): 1-11.
  • 10Dowski E R, Cathey W T. Extended Depth of Field through Wave-Front Coding[J]. Appl Optics,1995, 34(11):1859-1866.

共引文献26

同被引文献14

  • 1李晓彤.几何光学与光学设计[M].杭州:浙江大学出版社,1997.
  • 2Barry J R, Hadaway J B, Burleson T. All-reflective Four-element Zoom Telescope: Design and Analysis[C]. Proceeding of SPIE 1354, 1990 Intl Lens Design Conf. USA, 1990: 669-675.
  • 3Kristof S, Katja R, Jens K, et al. Wide Field-of-view All-reflective Objectives Designed for Multispectral Image Acquisition in Photogrammetric Applications[C]. Proceeding of SPIE 8172, Optical Complex Systems: OC S 11. France, 2011: 1-10.
  • 4Kristof S, Jens K, Heinrich G. Design of an All-reflective Unobscured Optical-power Zooming Objective[J]. 2009, 48(21): 4097-4107. .
  • 5David V W, Ty M, Don M P, et al. Active Optical Zoom System[C]. Proceeding of SPIE 5798, Spaceborne Sensors II. USA, 2005: 151-157.
  • 6Brett E B, David V W, William D C, et al. Active Zoom Imaging for Operationally Responsive Space[C]. Proceeding of SPIE 6467, MEMS Adaptive Optics. USA, 2007: 64670D 1-8.
  • 7Lin Y H, Liu Y L, Guo D J. Optical Zoom Module Based on Two Deformable Mirrors for Mobile Device Application[J]. Applied Optics, 2012, 51(11):1804-1810.
  • 8Zhao H, Fan X W. Prototype Design of an All-reflective Non-coaxial Optical Zooming System for Space Camera Application without Moving Elements Based on Deformable Mirror[C]. Proceeding of SPIE 8557, Optical Design and Testing V. China, 2012: 855713-1-8.
  • 9Sarah K, Peter D, David B, et al. Prototype Carbon Fiber Composite Deformable Mirror[J]. Opt. Eng. 2007, 46(9): 094003-1-7.
  • 10Matthew E L, Jung W, Christopher C W, et al. Large-aperture Active Optical Carbon Fiber Reinforced Polymer Mirror[C]. Proceeding of SPIE 8725, Micro- and Nanotechnology Sensors, Systems, and At3Dlications V. USA, 2013: 87250W-I-I I.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部