期刊文献+

具有高阶非线性项广义二维BBM方程的精确解 被引量:1

Explicit solutions of the generalized two-dimension BBM equation with higher order nonlinear terms
下载PDF
导出
摘要 为求得广义二维BBM方程的精确解,利用平面动力系统的分支理论,研究广义二维BBM方程,获得了孤立波解、周期波解、扭波解,并给出了广义二维BBM方程在不同参数下解的精确参数表示,这些解能较好地解释社会与自然中的现象。 In order to obtain exact solutions of the generalized two-dimension BBM equation, the bifurcation theory of planar dynamical system is used, the generalized two-dimension BBM equation is studied, the solitary wave solutions, periodic wave solutions and kink wave solutions are obtained. The explicit solutions of generalized two-dimension BBM equation under the different parameters are given. The phenomena in the society and nature can be well explained according to the solutions.
出处 《桂林电子科技大学学报》 2013年第4期335-338,共4页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11061010) 中国博士后基金(20100480952) 广西自然科学基金(2011GXNSFA018136)
关键词 广义二维BBM方程 分支理论 孤立波解 周期波解 扭波解 generalized two-dimension BBM equation bifurcation theory solitary wave solutions periodic wave solutions kink wave solutions
  • 相关文献

参考文献10

二级参考文献68

共引文献102

同被引文献13

  • 1吕大昭.非线性发展方程的丰富的Jacobi椭圆函数解[J].物理学报,2005,54(10):4501-4505. 被引量:22
  • 2黎明.广义BBM方程的有界行波解[J].四川师范大学学报(自然科学版),2007,30(4):478-480. 被引量:9
  • 3W. Malfliet. Solitary wave solutions of nonlinear wave equations [J]. America Journal Physics, 1992, 60(7) :650-654.
  • 4M. L. Wang et al. Application of a homogeneous balance meth- od to exact solutions of nonlinear equations in mathematical physics[J]. Physics Letters A, 1996, 216(1):67-75.
  • 5Z. Y. Yar New explicit traveling wave solutions for two new integrabIe coupled nonlinear evolution equations [J]. Physics Letters A, 2001, 292:100-106.
  • 6E. G. Fan. Unifomlly constructing a series of explicit exact so lutions to nonlinear equation in mathematical physics[J]. Chaos, Solitons and Fraetals, 2003, 16:819-839.
  • 7A. M. Wazwaz. The tanh method and a variable separated ODE method for solving double sine-Gordon equation[J]. Phy Lett. A,2006,350:367-370.
  • 8P. J. Olver. Applications of Lie groups to differential equations [M]. New York.. Springer-Verlag, 1993.
  • 9Benjamin T B,Bona J L. Model equations for long waves in non- linear dispersive systems[J]. Philos Trans R Soc, 1972, 272: A47-78.
  • 10S. Zhang, W. Wang, J. L Tong. The improved sub-ODE method for a generalized KdV - mKdV equation with nonlinear terms of any order, Phys. Lett. A ,2008, 372:3808-3813.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部