期刊文献+

Sb掺杂LiBiO_3电子结构的第一性原理计算 被引量:1

First-principles calculations for electronic structure of Sb-doped LiBiO_3
下载PDF
导出
摘要 通过能带结构、电子态密度、电子局域化函数、Bader电荷等方面的密度泛函理论(DFT)第一性原理计算,对掺杂了Sb的LiBiO3的电子结构进行研究,试图从理论角度探寻合适的光催化材料。计算结果表明,空间群为Pccn的正交LiBiO3为直接半导体,DFT计算带隙为0.23eV,而采用HSE泛函形式的计算带隙为1.18eV,较为接近实验测定值。随着Sb掺杂量的增加,LiBi1-xSbxO3的计算带隙逐渐加大,与纯LiBiO3相比,Sb掺杂体系中出现了具有更强键合作用的Sb-O键,有利于改善体系的光催化性能。 Electronic structure of Sb-doped LiBiO3 has been investigated by performing first-principles calculations within the framework of density functional theory (DFT) on band structure, density of state, electron localization function and Bader charge in order to explore appropriate photocatalytic material in theory. The calculated results show that the orthorhombic LiBiO3 with space group Pccn is a direct semiconductor with a DFT band gap of 0.23 eV. The calculated band gap based on HSE functional is about 1.18 eV, which is close to the experimental value. With the content of Sbis increased, the calculated band gap is enlarged gradually and the stronger Sb-O bonding in- teraction occurs in the Sb-doped system compared with pure LiBiO3, which improves the photocatalytic property of LiBi1-xSbxO3
出处 《桂林电子科技大学学报》 2013年第4期339-344,共6页 Journal of Guilin University of Electronic Technology
基金 国家自然科学基金(11164005 50901023) 广西自然科学基金(2010GXNSFD013009 2012GXNSFGA060002)
关键词 LiBiO3 第一性原理计算 Sb掺杂 光催化性能 LiBiO3 first-principles calculation Sb-doped photoeatalytic property
  • 相关文献

参考文献20

  • 1Palmisano L, Schinvello M, Sclafani A, et al. Photocata- lytic oxidation of phenol on TiO2 powders: A fourier transform infrared study[J]. Applied Catalysis B: Envi- ronmental, 1994,3 (2/3) : 117-132.
  • 2Lizama C, Freer J, Baeza J, et al. Optimized photodegra- dation of reactive blue 19 on TiOz and ZnO suspensions [J]. Catalysis Today, 2002,76 (2/3/4) :235-246.
  • 3Rengaraj S, Li X Z, Tanner P A, et al. Photocatalytic degradation of methylparathion-an endocrine disruptor by Bi^3+-doped TiOz [J]. Journal of Molecular Catalysis A .. Chemical, 2006,247 (1/2) : 36-43.
  • 4王俊珍,付希贤,杨秋华,白树林,孙艺环.Bi_2O_3对染料的光催化降解性能[J].应用化学,2002,19(5):483-485. 被引量:28
  • 5Fu H, Pan C, Yao W, et al. Visible-light-induced degra- dation of rhodamine B by nanosized Bi2 WO3[J]. The Journal of Physical Chemistry B, 2005,109 (47) : 22432- 22439.
  • 6Kudo A, Ueda K, Kato H, et al. Photocatalytic O2 evolu- tion under visible light irradiation on BiVO4 in aqueous AgNO3 solution[J]. Catalysis Letters, 1998, 53 (3/4) : 229-230.
  • 7AN Huizhong DU Yi WANG Tianmin WANG Cong HAO Weichang ZHANG Junying.Photocatalytic properties of BiOX(X=Cl,Br,and I)[J].Rare Metals,2008,27(3):243-250. 被引量:44
  • 8Kikugawa N, Yang L, Matsumoto T, et al. Photoinduced degradation of organic dye over LiBiO3 under illumination of white fluorescent light[J].journal of Materials Research, 2010,25(1) :177-181.
  • 9Kresse G, Furthmtiller J. Efficient iterative schemes for ah initio total-energy calculations using a plane-wave ba- sis set [J]. Physical Review B, 1996, 54 (16): 11169- 11186.
  • 10Perdew J P, Burke K, Ernzerhof M. Generalized gradi- ent approximation made simple [J]. Physical Review Letters, 1996,77(18) : 3865-3868.

二级参考文献42

  • 1王俊珍,颜秀茹,王建萍,曾淑兰.光催化剂SrTiO_3的制备及其性能的研究[J].化学工业与工程,1993,10(4):22-27. 被引量:8
  • 2郑红,汤鸿霄,王怡中.有机污染物半导体多相光催化氧化机理及动力学研究进展[J].环境科学进展,1996,4(3):1-18. 被引量:114
  • 3Luo H.M., Takata T., Lee Y., Zhao Y.F., Domen K., and Yan Y.S., Photocatalytic activity enhancing for titanium dioxide by Co-doping with bromine and chlorine, Chem. Mater., 2004, 16: 846.
  • 4Zhang L.S., Wang W.Z., Yang J., Chen Z.G., Zhang W.Q., Zhou L., and Liu S.W., Sonochemical synthesis of nanocrystallite Bi2O3 as a visible-light-driven photocatalyst, Appl. Catal. A, 2006, 308: 105.
  • 5Zhang S.C., Zhang C., Man Y., and Zhu Y.F., Visible-light-driven photocatalyst of Bi2WO6 nanoparticles prepared via amorphous complex precursor and photocatalytic properties, J. Solid State Chem., 2006, 179: 62.
  • 6Fu H.B., Pan C.S., Zhang L.W., and Zhu Y.F., Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts, Mater. Res. Bull., 2007, 42: 696.
  • 7Fu H.B., Zhang L.W., Yao W.Q., and Zhu Y.F., Photocatalytic properties of nanosized Bi2WO6 catalysts synthesized via a hydrothermal process, Appl. Catal. B, 2006, 66: 100.
  • 8Luan J.F., Zou Z.G., Lu M.H., Zheng S.R., and Chen Y.F., Growth, structural and photophysical properties of Bi2GaTaO7, J. Cryst. Growth, 2004, 273: 241.
  • 9Wang J.H., Zou Z.G., and Ye J.H., Surface modification and photocatalytic activity of distorted pyrochlore-type Bi2M(M=In, Ga and Fe)TaO7 photocatalysts, J. Phys. Chem. Solids, 2005, 66: 349.
  • 10Garza-Tovar L.L., Torres-Martinez L.M., Rodrinez D.B., Gomez R., and Angel G., J. Mol. Catal. A, 2006, 247: 283.

共引文献70

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部