期刊文献+

插值型模糊前向神经网络 被引量:1

Interpolation Fuzzy Feed-forward Neural Network
原文传递
导出
摘要 为了克服前向神经网络的固有缺陷,提出了基于采样数据建立的含单隐层神经元的模糊前向神经网络。该网络模型利用权值直接确定法得到了最优权值,网络结构可以随采样数据的多少,自主设定隐层神经元,完成了近似插值与精确插值的转换。计算机数值仿真实验表明,模糊前向神经网络具有逼近精度高、网络结构可调和实时性高的优点,并且可以实现预测和去噪。 In order to overcome the inherent drawbacks of feed-forward neural network, based on the sampling data set, fuzzy membership function is used to construct a new neural networks with single hidden layer. For this model, the best weight is received based on the method of weights-direct- determination, and the network's structure can be adjusted with the change of data set for designer, and completed the conversion of approximate interpolation and accurate interpolation. The results of numerical experiment with computer show that the fuzzy feed-forward neural network has many advantages, such as high approximation precision, the structure can be adjusted, and high real-time, and can forecast and denoising.
出处 《模糊系统与数学》 CSCD 北大核心 2013年第3期122-127,共6页 Fuzzy Systems and Mathematics
基金 中央高校基本科研业务费资助项目(JCB2013B07 2011B018) 华北科技学院高等教育科学研究课题(HKJYZD201213)
关键词 前向神经网络 隶属函数 权值直接确定法 插值 Feed-forward Neural Network Membership Function Weights-direct-determination Interpolation
  • 相关文献

参考文献9

二级参考文献88

  • 1陈天平.神经网络及其在系统识别应用中的逼近问题[J].中国科学(A辑),1994,24(1):1-7. 被引量:50
  • 2杨昔阳,尤晴曦,李洪兴.基于变论域理论的自动倒车控制[J].北京师范大学学报(自然科学版),2005,41(4):348-350. 被引量:16
  • 3曹飞龙,张永全,张卫国.单隐层神经网络与最佳多项式逼近[J].数学学报(中文版),2007,50(2):385-392. 被引量:13
  • 4罗兵,章云,黄红梅.基于协同进化遗传算法的神经网络优化[J].计算机工程与设计,2007,28(3):638-641. 被引量:7
  • 5Cybenko G. Approximation by superpositions of a single function[J]. Math Control, Signals & Systems, 1989, 2: 303-314.
  • 6Chen Tianping, Chert Hong, Lin Ruewen. Approximation capability in C(R^n) by multilayer feedforward networks and related problems[J]. IEEE Trans Neural Networks, 1995, 6: 25-30.
  • 7Xu Zongben, Cao Feilong. Simultaneous L^p-approximation order for neural networks[J]. Neural Networks, 2005, 18: 914-923.
  • 8Huang G B, Babri H A. Feedforward neural networks with arbitrary bounded nonlinear activation functions[J]. IEEE Trans Neural Networks, 1998, 9(1): 224-229.
  • 9Shrivatava Y, Dasgupta S. Neural networks for exact matching of functions on a discrete domain[A]. In: Proceedings of the 29th IEEE Conference on Decision and Control[C]. Honolulu, 1990, 1719-1724.
  • 10Ito Y, Saito K. Superposition of linearly independent functions and finite mappings by neural networks[J]. Math Sci, 1996, 21: 27-33.

共引文献46

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部