期刊文献+

基于糊糙集的改进Q学习算法

An improved Q-learning algorithm based on rough set
下载PDF
导出
摘要 针对Q学习算法容易出现错误的时间间隔重叠和高估Q值的情况,进而导致收敛速度慢、学习性能下降的问题,提出了一种改进的Q学习算法,即粗糙集Q学习算法.该算法通过有效处理不完备信息和不确定性知识,使Q值所引起的误差最小化,进而减少Q值的高估,提高学习性能.基于2种算法的机器人自主导航实验结果表明,粗糙集Q学习算法有更高的学习效率和更强的避障能力. Q-learning algorithm has a fundamental flaw, that is, prone to error intervals overlap, and thus overestimation of the correct Q-value. These are likely to lead to low convergence speed and continuous decline in the performance of Q-learning, an improved Q-learning algorithm was proposed, that was rough sets Q-learning algorithm. The algorithm can he able to minimize the overestimation caused by Q-values and improve performance of learning through effectively deal with incomplete information and uncertain knowledge. Navigation experiments based on these two algorithms were conducted, the results showed that rough sets Q-learning algorithm had higher efficiency of learning and stronger ability of obstacle avoidance than Q-learning algorithm.
出处 《郑州轻工业学院学报(自然科学版)》 CAS 2013年第3期42-45,共4页 Journal of Zhengzhou University of Light Industry:Natural Science
关键词 Q学习算法 粗糙集 机器人导航 Q-learning algorithm rough set robot navigation
  • 相关文献

参考文献5

  • 1Yu H Z, Bertsekas D P. Q-learning and policy iteration algorithms for stochastic shortest path problems [ EB/ OL ]. ( 2012 - 04 - 18 ) [ 2013 - 01 - 05 ]. http ://link. springer, com/article/lO. 1007% 2Fs10479 - 012 - 1128 - z/fulltext, html.
  • 2王雪松,程玉虎.机器学习理论、方法及应用[M].北京:科学出版社,2009.
  • 3James F Peters, Christopher Henry. Approximation spaces in off-policy Monte Carlo learning [ J ]. Engineering Applications of Artificial Intelligence, 2007 (20) : 667.
  • 4Peng J, Williams R J. Incremental muhi-step Q-learning [J]. Machine Leaning, 1996,22( 1/3 ) :283.
  • 5Pandey D, Pandey P. Approximate Q-learning:An introduction [ C]//2010 Second International Conference on Machine Learning and Computing, Washington DC:IEEE Computer Society ,2010.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部