摘要
基于Euler-Savary理论可生成无穷多直线导路机构,为快速准确地寻找满足尺寸、类型、直线度等各项运动学条件的实用机构,提出利用拐点求解具有至少二阶密切直线的全部机构解。当给定机架和欲逼近直线上的点及方向角,机构随连架杆方位角和拐圆圆心位置不同而变化。计算包括直线性在内的设计者感兴趣的机构属性并实现属性信息的可视化,考虑约束条件构建可行机构解域,引导设计者在可行解域内寻找最优机构,避免错选、漏选。通过设计示例验证了设计方法的正确性和实用性。
An infinite number of straight line guidance mechanisms can be produced base on Euler-Savary theory.To find rapidly and exactly feasible mechanisms which meet all kinematic conditions including link dimension,type and straightness constraints,all of mechanism solutions with at least second-order osculating straight line were solved with the help of inflexion point For given frame points,a point on the prescribed straight line and its direction angle,mechanisms vary with the angle of one side link and the center of inflexion circle.Mechanism properties of interest including straightness,were computed and the graphical visualization of property information was implemented.Feasible solution region adhering to design constraints can be displayed to guide designers to find the optimal mechanism and avoid the wrong or missed selection.To demonstrate the correctness and practicability of the approach,an example has been given.
出处
《组合机床与自动化加工技术》
北大核心
2013年第7期82-85,共4页
Modular Machine Tool & Automatic Manufacturing Technique
基金
陕西省教育厅科研计划项目资助(11JK0851)