期刊文献+

粒子群优化模糊聚类在信号分选中的应用 被引量:4

Application of PSO-FCM to Signal Sorting
下载PDF
导出
摘要 针对传统的聚类算法分选正确率不高的问题,提出基于粒子群优化模糊聚类方法的分选算法,该方法利用粒子群优化算法的全局寻优能力和模糊C均值的模糊分类性质,不仅避免了梯度下降法所带来的容易陷入局部极小值的缺陷,同时也改善了不同初始聚类中心对聚类结果的影响。实验结果证明了该方法能提高雷达信号分选的正确率。 In order to improve the sorting precision of traditional clustering algorithm,a sorting al- gorithm based on particle swarm optimization fuzzy clustering method (PSO-FCM) is proposed in this paper. The method uses the seeking global excellent result performance of particle swarm opti- mization algorithm and fuzzy classification nature of fuzzy C means,which not only escapes from io- cal minimum due to gradient descent method, but also improves the influence of different initial clustering centers on clustering result. Experiment results demonstrate that the algorithm can im- prove the precision of radar signal sorting.
出处 《舰船电子对抗》 2013年第3期85-87,共3页 Shipboard Electronic Countermeasure
关键词 粒子群优化算法 模糊C均值 信号分选 particle swarm optimization algorithm; fuzzy C means ; signal sorting
  • 相关文献

参考文献6

  • 1张万军,樊甫华,谭营.聚类方法在雷达信号分选中的应用[J].雷达科学与技术,2004,2(4):219-223. 被引量:36
  • 2利稷夫.无监督聚类算法在辐射源信号分析中的应用[D].成都:西南交通大学,2007.
  • 3Kennedy J, Eberhart R. Swarm Intelligence[M]. San Francisco, CA: Morgan Kaufmann Publishers, Inc. ,2001.
  • 4Ruspini E H. New experimental results in fuzzy cluste- ring [J]. Information Science, 1973,18(2):273- 287.
  • 5Eberhart R C,Shi Y. Tracking and optimizing dynamic systems with particle swarms[-A]. Proe. IEEE Interna- tional Congress on Evolutionary Computation (CEC 2001) [C], 2001 : 94 - 97.
  • 6谢晓锋,张文俊,杨之廉.微粒群算法综述[J].控制与决策,2003,18(2):129-134. 被引量:421

二级参考文献35

  • 1万建伟,宋小全,皇甫堪,周良柱.雷达信号综合分选方法研究[J].电子学报,1996,24(9):91-94. 被引量:10
  • 2[31]Eberhart R, Hu Xiaohui. Human tremor analysis using particle swarm optimization[A]. Proc of the Congress on Evolutionary Computation[C].Washington,1999.1927-1930.
  • 3[32]Yoshida H, Kawata K, Fukuyama Y, et al. A particle swarm optimization for reactive power and voltage control considering voltage security assessment[J]. Trans of the Institute of Electrical Engineers ofJapan,1999,119-B(12):1462-1469.
  • 4[33]Eberhart R, Shi Yuhui. Tracking and optimizing dynamic systems with particle swarms[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Hawaii,2001.94-100.
  • 5[34]Prigogine I. Order through Fluctuation: Self-organization and Social System[M]. London: Addison-Wesley,1976.
  • 6[1]Kennedy J, Eberhart R. Particle swarm optimization[A]. Proc IEEE Int Conf on Neural Networks[C].Perth,1995.1942-1948.
  • 7[2]Eberhart R, Kennedy J. A new optimizer using particle swarm theory[A]. Proc 6th Int Symposium on Micro Machine and Human Science[C].Nagoya,1995.39-43.
  • 8[3]Millonas M M. Swarms Phase Transition and Collective Intelligence[M]. MA: Addison Wesley, 1994.
  • 9[4]Wilson E O. Sociobiology: The New Synthesis[M]. MA: Belknap Press,1975.
  • 10[5]Shi Yuhui, Eberhart R. A modified particle swarm optimizer[A]. Proc IEEE Int Conf on Evolutionary Computation[C].Anchorage,1998.69-73.

共引文献456

同被引文献88

引证文献4

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部