摘要
利用权函数方法得到一类求非线性方程单根的最优8阶收敛迭代法.该方法每步迭代需要计算3个函数值和1个一阶导数值,效率指数为1.682.数值试验结果表明,该方法具有较高的收敛阶数和计算精度.
In this paper,we present a new family of optimal eighth-order iterative methods for solving nonlinear equations by using weight function approach.Per iteration the new methods need to compute three functional evaluations and one evaluation of first-order derivative,which implies that the efficiency index of the new method is 1.682.Numerical results shown that,comparing with the other iterative methods,our iterative methods have higher convergence order and calculation precision.
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2013年第4期568-572,共5页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11071033)
关键词
非线性方程
最优阶
8阶收敛
迭代法
求根
nonlinear equations
optimal order
eighth-order convergence
iterative method
root-finding