期刊文献+

一类求解非线性方程最优的8阶收敛迭代法 被引量:13

A Family of Optimal Eighth-Order Iterative Methods for Solving Nonlinear Equations
下载PDF
导出
摘要 利用权函数方法得到一类求非线性方程单根的最优8阶收敛迭代法.该方法每步迭代需要计算3个函数值和1个一阶导数值,效率指数为1.682.数值试验结果表明,该方法具有较高的收敛阶数和计算精度. In this paper,we present a new family of optimal eighth-order iterative methods for solving nonlinear equations by using weight function approach.Per iteration the new methods need to compute three functional evaluations and one evaluation of first-order derivative,which implies that the efficiency index of the new method is 1.682.Numerical results shown that,comparing with the other iterative methods,our iterative methods have higher convergence order and calculation precision.
作者 王晓锋 张铁
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第4期568-572,共5页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11071033)
关键词 非线性方程 最优阶 8阶收敛 迭代法 求根 nonlinear equations optimal order eighth-order convergence iterative method root-finding
  • 相关文献

参考文献9

  • 1Kung H T, Traub J F. Optimal Order of One-Point and Multipoint Iterations [J]. J Appl Comput Math, 1974, 21(4): 643-651.
  • 2Ostrowski A M. Solutions of Equations and Systems of Equations [M]. New York: Academic Press, 1960.
  • 3Ortega J M, Rheinbolt W C. Iterative Solution of Nonlinear Equations in Several Variables [M]. New York: Academic Press, 1970.
  • 4King R F. A Family of Fourth Order Methods for Nonlinear Equations [J].SIAM J Numer Anal, 1973, 10(5) :876-879.
  • 5Cordero A, Torregrosa J R. Variants of Newton' s Method Using Fifth-Order Quadrature Formulas [J]. Appl Math Comput, 2007, 190(1): 686-698.
  • 6WANG Xiao-feng, ZHANG Tie. A Family of Steffensen Type Methods with Seventh-Order Convergence [J]. Numer Algor, 2013, 62(3): 429-444.
  • 7王晓锋,陈静.6阶收敛的牛顿迭代修正格式[J].河南师范大学学报(自然科学版),2010,38(4):26-28. 被引量:5
  • 8王晓锋.修正的三阶收敛的牛顿迭代法[J].数学的实践与认识,2010,40(3):216-218. 被引量:11
  • 9刘雅妹,王霞.一类新的求解非线性方程的七阶方法[J].数学的实践与认识,2011,41(14):239-245. 被引量:13

二级参考文献28

  • 1张荣,薛国民.修正的三次收敛的牛顿迭代法[J].大学数学,2005,21(1):80-82. 被引量:26
  • 2王霞,赵玲玲,李飞敏.牛顿方法的两个新格式[J].数学的实践与认识,2007,37(1):72-76. 被引量:36
  • 3OZBan A Y. Some new variants of Newton's methods[J]. Applied Mathematics Letters, 2004, 17: 677-682.
  • 4易大义,沈云宝,李有法.计算方法[M].杭州:浙江大学出版社,2006.
  • 5Ostrowski A M. Solution of Equations in Euclidean and Banach Space, third edIM]. Academic Press, New York, 1973.
  • 6Traub J F. Iterative Methods for Solution of Equations[M]. Prentice-Hall, Englewood Cliffs, N J, 1964.
  • 7Gutierrez J M and Hernendez M A. A family of Chebyshev-Halley type methods in Banach spaces[J]. Bull Aust Math. Soc, 1997, 55: 113-130.
  • 8Ozban A Y. Some new variants of Newton's method[J]. Appl Math Lett, 2004, 17:677-682.
  • 9S. Weerakoon and T. G. I. Fernando, A variant of Newton's method with accelerated third-order convergence[J]. Appl Math Lett, 2000, 13(8): 87-93.
  • 10Jisheng Kou and Yitian Li, The improvements of Chebyshev-Halley methods with fifth-order con- vergence[J]. Appl Math Comput, 2007, 188: 143-147.

共引文献21

同被引文献90

引证文献13

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部