期刊文献+

一类非线性波方程时间周期解的存在性

Existence of Time-Periodic Solutions of Some Kind of Nonlinear Wave Equations
下载PDF
导出
摘要 考虑非线性波方程时间周期解的存在性.应用变分法,在非线性项满足超线性增长且非单调的条件下,证明了非线性波方程时间周期解新的存在性结果. This paper deals with the existence of time-periodic solutions for nonlinear wave equations.Some new existence result of time-periodic solutions for nonlinear wave equations was established via the variational method when the nonlinearity is superlinear and nonmonotone.
作者 赵昕
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第4期623-625,共3页 Journal of Jilin University:Science Edition
基金 吉林省自然科学基金(批准号:201215184)
关键词 波方程 时间周期解 变分法 wave equation time-periodic solution variational method
  • 相关文献

参考文献8

  • 1Rabinowitz P H. Free Vibrations for a Semilinear Wave Equation [J]. Comm Pure Appl Math, 1978, 31(1): 31-68.
  • 2Brezis H, Coron J M, Nirenberg L. Free Vibrations for a Nonlinear Wave Equation and a Theorem of P. Rabinowitz [J]. Comm Pure Appl Math, 1980, 33(5): 667-684.
  • 3Castro A, Preskill B. Existence of Solutions for a Semilinear Wave Equation with Non monotone Nonlinearity [J]. Discrete Contin Dyn Syst, 2010, 28(2) : 649-658.
  • 4常小军,路京京.一类渐近线性波方程的非平凡时间周期解[J].吉林大学学报(理学版),2013,51(3):373-376. 被引量:1
  • 5Costa D G, Magalhaes C A. A Unified Approach to a Class of Strongly Indefinite Functionals [J]. J Differential Equations, 1996, 125(2): 521 -547.
  • 6Jl Shu-guan, I.I Yong. Time Periodic Solutions to the One Dimensional Nonlinear Wave Equation [J]. Arch Ration Mech Anal, 2011, 199: 435-451.
  • 7Coron J M. Periodic Solutions of a Nonlinear Wave Equation without Assumption of Monotonicity [J]. Math Ann, 1983, 262: 273- 285.
  • 8Wei Yuan-hong,Chang Xiao-jun,L Yue,Li Yong.Superlinear Fourth-order Elliptic Problem without Ambrosetti and Rabinowitz Growth Condition[J].Communications in Mathematical Research,2013,29(1):23-31. 被引量:2

二级参考文献30

  • 1Anane A, Chakrone 0, Zerouali A. Nonresonance Conditions for a Nonlinear Hyperbolic Problem[J]. Adv Dyn Syst Appl , 2007, 2(1): 31-40.
  • 2GUO Yu-xia , LIUJia-quan. Periodic Solutions for an Asymptotically Linear Wave Equation with Resonance[J]. Nonlinear Analysis: Theory, Methods &. Applications, 2007, .. 67(9): 2727-2743.
  • 3Girao P, Tehrani H. On the Fucik Spectrum of the Wave Operator and an Asymptotically Linear Problem[n. J Math Anal Appl , 2010, 366(1): 55-66.
  • 4I Shu-guan , LI Yong. Time Periodic Solutions to the One-Dimensional Nonlinear Wave Equation[J]. Arch Ration Mech Anal, 2011, 199(2): 435-45l.
  • 5Rudakov I A. Periodic Solutions of a Quasilinear Wave Equation with Homogeneous Boundary Conditions[n. J Math Sci , 2008, 150(6): 2588-2597.
  • 6Tanaka 1\1. Application of Local Linking to Asymptotically Linear Wave Equations with Resonance II[J]. SUTJ Math, 2C04, 40(2): 157-179.
  • 7Tanaka M. Existence of Multiple Weak Solutions for Asymptotically Linear Wave Equations[n. Nonlinear Analysis: Theory, Methods &. Applications, 2006, 65 (2): 475-499.
  • 8CHANG Xiao-jun , LI Yong. Existence and Multiplicity of Nontrivial Solutions for Semilinear Elliptic Dirichlet Problems across Resonance[J]. Topol Methods Nonlinear Anal, 2010, 36(2): 285-310.
  • 9LIU Zhao-Ii , SU Iia-bao , WANG Zhi-qiang. A Twist Condition and Periodic Solutions of Hamiltonian Systems[J]. Advin Math, 2008, 218(6): 1895-1913.
  • 10LIU Zhao-Ii, SU Iia-bao , WANG Zhi-qiang. Solutions of Elliptic Problems with Nonlinearities of Linear Growth[J]. Calc Var Partial Differ Equat , 2009, 35(4): 463-480.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部