期刊文献+

Fermi架构下的SPSO算法加速 被引量:1

Accelerated SPSO Algorithm on Fermi Architecture
下载PDF
导出
摘要 利用新的图形处理器架构重新评估利用可编程图形处理器加速标准粒子群优化算法的可行性和有效性.针对新的图形处理器架构进行系统分析,在此架构下实现了标准粒子群优化算法的并行版本.实验结果表明,通过合理运用新的图形处理器架构,与其他标准粒子群优化算法的并行版本相比,取得了良好的加速比. We used a new architecture of graphic processing unit(Fermi GPU) to re-evaluate the feasibility and effectiveness of using programmable GPU to accelerate the standard particle swarm optimization(SPSO) algorithm and made a systematical analysis on the rules of harnessing the power of Fermi GPU,and implemented the parallel version of SPSO on such an architecture.In the experiment,we achieved a good speedup via the best use of the new architecture of graphic processing unit,compared to using the other parallel version of the algorithm.
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第4期647-652,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61073009 60873235) 国家高技术研究发展计划863项目基金(批准号:2011AA010101) 吉林省科技发展计划重点项目基金(批准号:20080318)
关键词 标准粒子群优化算法 Fermi架构 图形处理器 standard particle swarm optimization(SPSO) algorithm Fermi architecture graphic processing unit(GPU)
  • 相关文献

参考文献11

  • 1Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//Proc IEEE International Conference on Neural Networks. Piscataway: IEEE Press, 1995: 1942-1948.
  • 2Shayeghi A, Shayeghi H, Eimani K H. Application of PSO Technique for Seismic Control of Tall Building [J]. International Journal of Electrical and Computer Engineering, 2009, 4(5): 293-300.
  • 3Das M T, Dulger L C. Signature Verification (SV) Toolbox: Application of PSO-NN [J]. Engineering Applica- tions of Artificial Intelligence, 2009, 22(4/5): 688-694.
  • 4FANG Hong-qing, CHEN Long, SHEN Zu-yi. Application of an Improved PSO Algorithm to Optimal Tuning of PID Gains for Water Turbine Governor[J].Energy Conversion and Management, 2011, 52(4): 1763-1770.
  • 5Bratton D, Kennedy J. Defining a Standard for Particle Swarm Optimization [C]//IEEE Swarm Intelligence Symposium. Piscataway: IEEE Press, 2007: 120-127.
  • 6Mussi L, Daolio F, Cagnoni S. Evaluation of Parallel Particle Swarm Optimization Algorithms within the CUDA Architecture [J]. Information Sciences, 2011, 181(20): 4642-4657.
  • 7Weber R, Gothandaraman A, Hinde R J, et al. Comparing Hardware Accelerators in Scientific Applications: A Case Study [J]. IEEE Transactions on Parallel and Distributed Systems, 2011, 22(1) : 58 -68.
  • 8NVIDIA Corporation. CUDA Programming Guide for CUDA Toolkit 3. 2 [EB/OL]. [2012 03-08]. http:// developer, download, nvidia, com/compute/euda/3\_2\_prod/toolkit/docs/CUDA\C\_Programming\_Guide. pdf.
  • 9Veronese L P, De, Krohling R A. Swarm's Flight: Accelerating the Particles Using C CUDA [C]//Proc IEEE Congress on Evolutionary Computation (CEC 2009). Piscataway: IEEE Press, 2009: 3264-3270.
  • 10ZHOU You, TAN Ying. GPU-Based Parallel Particle Swarm Optimization [C]//Proc IEEE Congress on Evolutionary Computation (CEC 2009). Piseataway: IEEE Press, 2009: 1493-1500.

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部