期刊文献+

小波技术在曲面变形中的应用 被引量:1

The Application of Wavelets Decomposition on Surface's Deformation
下载PDF
导出
摘要 曲面光顺过程会导致曲面形状有很大改变。介绍一种光顺变形后曲面的一种新方法,这种算法根据小波分解的原理除去局部变形后曲面的高频部分,保留其低频部分,采用B-Spline小波捕捉小波分解过程中丢失的细节信息,光顺曲面,使得变形后的曲面能够很好地保持其原有的总体形态,并且满足一定的连续性要求。小波分解,曲面局部变形产生的棱或尖点得到有效的光顺处理。小波分解的计算快速、稳定,特别适合光顺由多控制顶点定义的曲面。 Surface smoothing process can lead to a great change on surface shape.A new way to smoothing surface is presented.After surface's deformation,its high frequency components are deleted and low frequency components are remained according to principle of wavelet's decomposition.In B-Spline wavelet,the details which are lost during the decomposition are captured to smooth the surface,the entire shape of the deformed surface hardly changed,and some continuity is satisfied.Wavelet decomposition and local deformation of surface edge or sharp point can get effective smoothing processing.Wavelet decomposition has the advantages of fast calculation,stability,and especially suitable for smoothing surface defined by the control vertices.
作者 刘军 刘伟军
出处 《机械设计与制造》 北大核心 2013年第5期100-101,104,共3页 Machinery Design & Manufacture
关键词 小波分级 曲面变形 光顺 B-Spline基 Wavelet's Decomposition Surface's Deformation Smoothing B-Spline Base
  • 相关文献

参考文献12

  • 1Barr,A.H.,Global and Local Deformation of Solid Primitives[J].SIGG-RAPH’84,ACM Comp.Graph,1984,18(3):21-30.
  • 2Sederberg,T.W.and Parry,S.R.,Free-Form Deformation of SolidGeometric Models[J].SIGGRAPH’86,ACM Comp.Graph,1986,20.
  • 3Jean-Luc Starck,Jalal Fadili,and Fionn Murtagh,The UndecimatedWavelet Decomposition and its Reconstruction[J].IEEE TRANSACTIO-NS ON IMAGE PROCESSING,2007,16(2).
  • 4Daulechies,I.,Where do Wavelets come from-A Personal Point of View[C].Proc.oftheIEEE,1996,84(4):510-513.
  • 5De Boor C.,On Calculation with B-Spline[J].Approximation Theory,1972(6):50-62.
  • 6Fournier,A.,Wavelets and Their Applications in Computer Graphics[C].SIGGRAPH’94CourseNotes.
  • 7Delingette H.,Watanabe Y.,Suenaga Y.,Simplex Based Animation,proceedings Computer Animation’93[M].Eds Magnenat-Htalmann N.Thalmann D.,Springer Verlag,pp.13-28,1993.
  • 8Mallat,S.,A Theory for Multiresolution Signal Decomposition:WaveletRepresentation[C].IEEE Transaction Analysis and Machine Intelligence,1989,11(7),674-693.
  • 9Finkelstein,A.and Salesin D.H.,Multiresolution Curves[J].SIGGRA-PH’94,261-268.
  • 10Stollnitz,J.,DeRose,D.andSalesin,H.,WaveletsforComputerGrap-hics:A Primer,Part 2[J].IEEE Computer Graphics and Applications,1995,15(4):75-84.

二级参考文献7

  • 1[1]Luo R C, Kay M G. Multisensor Integration And Fusion For Intelligent Machines And Systems. New Jersey: Ablex Publishing Corporation, 1995. 1~25
  • 2[2]Varshney P K. Multisensor data fusion. Electronics & Communication Engineering Journal, 1997,9(6):245~253
  • 3[3]Yocky D A. Image merging and data fusion by means of the discrete two-dimensional wavelet transform. Journal of Optical Society of America, 1995, 12(9):1834~1841
  • 4[4]Nunez J, Otazu X, Fors O, Prades A, Pala V, Arbiol R. Multiresolution-based image fusion with additive wavelet decomposition. IEEE Transactions on Geoscience and Remote Sensing, 1999,37(3):1204~1211
  • 5[5]Mallat S G. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):674~693
  • 6[6]Mallat S G. A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1998.302~310
  • 7[7]Campbell F W, Robson J. Application of Fourier analysis to the visibility of gratings. Journal of Physiology, 1968,197:551~556

共引文献135

同被引文献11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部