期刊文献+

变系数非线性发展方程的精确解

Exact Solution of Nonlinear Evolution Equations with Variable Coefficient
下载PDF
导出
摘要 利用(W/G)展开法求解变系数KdV方程,得到了很多新的精确解,包括单循环孤立子解、三角周期解、有理函数解等.这些解对解释复杂物理现象具有重要的物理意义. In this paper, the (W/G)-expansion method is used to solve the KdV equation with variable coefficients . Some new exact solution solutions of the KdV equation with variable coefficients are derived which included single-loop soliton solutions, triangular periodic solutions, rational function solutions and so on. These solutions are important to explain the complex physical phenomena .
作者 刘勇 王振立
出处 《聊城大学学报(自然科学版)》 2013年第2期24-28,共5页 Journal of Liaocheng University:Natural Science Edition
基金 国家自然科学基金 中国工程物理研究院联合基金资助(11076015)
关键词 (W G)展开法 (G’G)展开法 (G’)展开法 非线性发展方程 行波解 变系数KDV方程 (W/G)-expansion method, (G'/G)-expansion method,G'-expansion method, nonlinear evolution equation, traveling wave solutions, the KdV equation with variable coefficients
  • 相关文献

参考文献16

  • 1Lu Zhuo-sheng,Zhang Hong-qing, On a new modified extended tanh-function method[J], Commun Theor Phys,2003, 39: 405-408.
  • 2FAN En-gui,Benny Y C Hon. Generalized tanh method extended to special types of nonlinear equations[J]. Z Naturforsch,2002, 57:692-700 .
  • 3刘式适,付遵涛,刘式达,赵强.变系数非线性方程的Jacobi椭圆函数展开解[J].物理学报,2002,51(9):1923-1926. 被引量:100
  • 4李宁.两类非线性发展方程的新精确解[J].聊城大学学报(自然科学版),2012,25(2):1-5. 被引量:7
  • 5HE Ji-huani Abdou,New periodic solutions for nonlinear evolution equations using Exp-function method [J], Chaos Soliton Fract,2007, 34: 1 421-1 429.
  • 6Wazwaz A M, A sine-cosine method for handling nonlinear wave equationsCJD- Appl Math Model,2004,40 : 499-508.
  • 7李向正,张金良,王明亮.用F展开法解变系数KdV方程[J].云南大学学报(自然科学版),2006,28(3):222-226. 被引量:4
  • 8Rogers C,Schief W K. Backlund and Darboux Transformations, Geometry and Morden Applications in Soliton Theory[M], Cam-bridge :Cambridge University Press,2002.
  • 9Wang Ming-liang. Li Xiang-zheng. The(G' /G)-expansion method and traveling wave solution Of nonlinear evolution equation in themathematical physics[J], Phy Lett A, 2008, 372 : 417-423.
  • 10Li Wen-an, Chen Hao,Zhang Guo-cai. The(.W/G)-expansion method and its application to Vakhnenko equation[J], Chin Phys,2009,18: 400-404.

二级参考文献32

  • 1王跃明,姚丽萍,王明亮.广义Ostrovsky方程的精确解[J].河南科技大学学报(自然科学版),2006,27(5):83-85. 被引量:3
  • 2董仲周,王玲.(2+1)维Boussinesq方程的对称、约化、群不变解及守恒律[J].聊城大学学报(自然科学版),2007,20(1):21-24. 被引量:14
  • 3WANG Ming-liang, LI Xiang-zheng. The-expansion method and travelling wave solution Of nonlinear evolution equation in the mathe- matical physicsEJ']. Phy Lett A, 2008,372 t 417-423.
  • 4JOEL S.Shock waves and reaction-diffusion equations[M].New York:Springer-Verlag New York Inc,1983.
  • 5LIU Shi-kuo,FU Zun-tao,LIU Shi-da,et al.Jacobi elliptic function expansion method and periodic solutions of nonlinear wave equations[J].Physics Letters A,2001,289:69-74.
  • 6WANG Ming-liang,ZHOU Yu-bin.The periodic wave solutions for the Klein-Gordon-Schro dinger equations[J].Physics Letters A,2003,318:84-92.
  • 7WANG Mingliang,ZHOU Yu-bin.The periodic wave solutions and solitary wave solutions for a class of nonlinear partial differential equations[J].Physics Letters A,2004,323:77-88.
  • 8WANG Ming-liang,LI Xiang-zheng.Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation[J].Chaos,Solitons and Fractals,2005,24:1 257-1 268.
  • 9范恩贵,张鸿庆.非线性孤子方程的齐次平衡法[J].物理学报,1998,47(3):353-362. 被引量:265
  • 10张解放.长水波近似方程的多孤子解[J].物理学报,1998,47(9):1416-1420. 被引量:76

共引文献428

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部