期刊文献+

基于电纺丝法的In_2O_3/CdO复合材料的制备及甲醛气敏特性 被引量:8

Preparation of Electrospun In_2 O_3 /CdO Composite and Its Formaldehyde-Sensing Properties
下载PDF
导出
摘要 用静电纺丝法制备了In(NO3)3/聚乙烯吡咯烷酮(PVP)纺丝前驱物,然后分别在500、600、700°C时烧结得到三种In2O3纳米纤维.通过X射线衍射(XRD)仪、热重差热分析(TG/DTA)、场发射扫描式电子显微镜(FE-SEM)表征结果得知,500°C时In2O3的晶相已经形成,且粒径为最小,约为24nm,纳米纤维呈介孔结构.将三种烧结温度的In2O3纤维制作成气敏元件,测试对比了三种元件对甲醛气体的敏感特性,结果表明,500°C烧结得到的In2O3纳米纤维在工作温度为240°C时响应最好,对浓度为10×10-6(体积分数,φ)甲醛的响应为7.用静电纺丝法合成了CdO纳米颗粒,通过XRD、SEM表征得知CdO呈粒径约为68nm的颗粒.将In2O3和CdO以不同摩尔比(1:1,10:1,20:1)复合,对比测试了纯In2O3及三种In2O3/CdO复合材料对应的气敏元件对甲醛的气敏特性,测试结果表明当In2O3纳米纤维与CdO纳米颗粒以摩尔比10:1复合时,元件的工作温度较低(200°C),且对甲醛表现出最佳的气敏特性,对浓度为10×10-6甲醛的响应为13.6,响应/恢复时间为140s/32s.最后对不同摩尔比复合的In2O3/CdO对甲醛的气敏机理进行了初步分析. In(NO3)Jpolyvinyl pyrrolidone (PVP) nanofiber precursors were synthesized using a traditional electrospinning method, and were then annealed at 500, 600, and 700 ℃ to form In203 nanofibers. The as-prepared In203 nanofibers were characterized using X-ray diffraction (XRD), thermal gravimetry and differential thermal analysis (TG/DTA), and field-emission scanning electron microscopy (FE-SEM). The results show that the In2O3 nanofibers crystallize well, with a small average grain size (about 24 nm) and a good mesoporous structure, when annealed at 500 ℃. The In203 nanofibers annealed at the three temperatures were further used to fabricate gas sensors. The test results show that the sensor based on In203 annealed at 500℃ has the highest response (about 7) to 10x 10-~ (volume fraction, ℃) formaldehyde (HCHO) at an operating temperature of 240 ℃. CdO nanoparticles were also prepared using the same method; XRD and FE-SEM show that the average grain size of CdO is about 68 nm. Finally, the as-prepared In203 nanofibers were mixed with the as-prepared CdO in molar ratios of 1:1, 10:1, and 20:1, and the mixtures were used to fabricate gas sensors. The HCHO-sensing properties of the sensors based on pure In2O3 and In2O3/CdO composites with different molar ratios were investigated at each optimum temperature. The results show that the In2O3/CdO composite with a molar ratio of 10:1 has excellent sensing properties: the response to 10x 10-6 HCHO is 13.6, the response/recovery time is 140 s/32 s, and the selectivity is better at a lower operating temperature of 200 ℃. In addition, the HCHO-sensing mechanism of the sensors based on the In2O3/CdO composites was briefly analyzed.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2013年第8期1827-1836,共10页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(61176068 61131004 61001054)资助项目~~
关键词 IN2O3 CDO 复合材料 甲醛 气敏特性 In2O3 CdO Composite Formaldehyde Gas-sensitivity
  • 相关文献

参考文献29

  • 1Lao, J. Y. Huang, J. Y. Wang, D. Z. Ren, Z. F.Adv. Mater 2004, 16 (1), 65.
  • 2Gurlo, A. Barsan, N. Wemaar, U. lvanovskaya, M. Taurino, A. Sicilianoet, P. Chem. Mater. 2003, 15 (23), 4377.
  • 3Jiao, Z. Wu, M. H. Gu, J. Z. Sun, X. L. Sens. ActuatorB-Chem. 2003, B94, 216.
  • 4Belysheva, T. V. Kazachkov, E. A. Gutman, E. E. J. Anal. Chem. 2001, 56 (7), 676. doi: 10.1023/A:1016756725312.
  • 5Zhang, Y. He, X. L. Li, J. P. Sens. Actuator B-Chem. 2008,132, 67. doi: 10.1016/j.snb.2008.01.O06.
  • 6范会涛,曾毅,杨海滨,郑学军,刘丽,张彤.ZnO-CuO纳米复合氧化物的制备及其气敏性能[J].物理化学学报,2008,24(7):1292-1296. 被引量:10
  • 7Dirksena, J. A. Duvala, K. Ring, T. A. Sens. Actuator B-Chem. 2001, 80 (2), 106. doi: 10.1016/S0925-4005(01) 00898-X.
  • 8Kolmakov, A. Moskovits, M. Annu. Rev. Mater. 2004, 34, 151. doi: 10.1146/annurev.matsci.34.040203.112141.
  • 9Soldano, C. Comini, E. Baratto, C. Ferroni, M. Faglia, G. Sberveglieri, G.Am. Ceram. Soc. 2012, 95 (3), 831.
  • 10Zheng, W. Lu, X. F. Wang, W. Li, Z. Y. Zhang, H. G. Wang, Y. Wang, Z. J. Wang, C. Sens. Actuator B-Chem. 20119, 142, 61. doi: 10.1016/j.snb.2009.07.031.

二级参考文献96

  • 1赵鹤云,李跃华,柳清菊,吴兴惠.SnO_2纳米棒的制备及其气敏特性研究[J].电子元件与材料,2006,25(1):8-11. 被引量:6
  • 2Koida, T.; Fujiwara, H.; Kondo, M. Solar Energy Materials & Solar Cells, 2009, 93:851.
  • 3Prim, A.; Petlicer, E.; Rossinyol, E.; Peir6, F.; Comet, A.; Morante, J. R. Adv. Funct. Mater., 2007, 17:2957.
  • 4Chen, L. Y.; Liang, Y.; Zhang, Z. D. Eur. J. lnorg. Chem., 2009: 9O3.
  • 5Sharma, R.; Mane, R. S.; Min, S. K.; Han, S. H. J. Alloy. Compd., 2009, 479:840.
  • 6Wang, X. Q.; Zhang, M. F.; Liu, J. Y.; Luo, T.; Qian, Y. T. Sens. Actuators B-Chem., 2009, 137:103.
  • 7Vomiero, A.; Bianchi, S.; Comini, E.; Faglia, G.; Ferroni, M.; Poli, N.; Sberveglieri, G. Thin Solid Films, 2007, 515:8356.
  • 8Xu, P. C.; Cheng, Z. X.; Pan, Q. Y.; Xu, J. Q.; Xiang, Q.; Yu, W. J.; Chu, Y. L. Sens. Actuators B-Chem., 2008, 130:802.
  • 9Zheng, W.; Lu, X. F.; Wang, W.; Dong, B.; Zhang, H. N.; Wang, Z. J.; Xu, X. R.; Wang, C. J. Am. Ceram. Soc., 2010, 93:15.
  • 10Natale, C. D.; Brunink, J. A. J.; Bungaro, F.; Davide,'F.; d'Amico, A.; Paolesse, R.; Boschi, T.; Faccio, M.; Ferri, G. Meas. Sci. Technol., 1996, 7:1103.

共引文献22

同被引文献287

引证文献8

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部