期刊文献+

混凝土裂纹扩展过程模拟的扩展有限元法研究 被引量:23

SIMULATION OF THE CONCRETE CRACK PROPAGATION PROCESS WITH THE EXTENDED FINITE ELEMENT METHOD
原文传递
导出
摘要 扩展有限元法(the extended Finite Element Method,XFEM)为数值模拟结构裂纹扩展过程提供了一条有效途径。该文介绍了用扩展有限元法对混凝土结构裂纹扩展过程进行数值模拟的实现方法。采用虚拟裂缝模型模拟混凝土非线性断裂行为,针对二维四边形单元推导了详细的有限元列式。采用3种方案对非线性方程系统进行求解,分析了其求解思路并概括了其求解步骤。通过对带初始边缘裂纹的单向拉伸混凝土板的数值模拟,对3种求解方案的计算结果进行了分析和讨论。 The extended finite element method (XFEM) provides an effective way for the numerical simulation of the crack propagation process of structures. The implementation method for the numerical simulation of the crack propagation process of concrete structures with the extended finite element method is introduced. The fictitious crack model is adopted to simulate the concrete nonlinear fracture behaviour. The detailed formulations of a two-dimensional quadrilateral element for the finite element analysis are derived. Three schemes are employed to solve the nonlinear system of equations and their implementation procedures are analyzed and summarized. The numerical simulation of an edge-cracked uniaxial tensile concrete plate is conducted and the corresponding results are analyzed.
出处 《工程力学》 EI CSCD 北大核心 2013年第7期14-21,27,共9页 Engineering Mechanics
基金 重庆市自然科学基金项目(CSTC2010BB6019) 近海冲击与安全工程浙江省重中之重学科开放基金项目(ZJ1109) 浙江省自然科学基金项目(Y1110548)
关键词 扩展有限元法 裂纹扩展 虚拟裂缝模型 非线性断裂 数值模拟 the extended finite element method (XFEM) crack propagation fictitious crack model nonlinearfracture numerical simulation
  • 相关文献

参考文献17

  • 1杨庆生,杨卫.断裂过程的有限元模拟[J].计算力学学报,1997,14(4):407-412. 被引量:67
  • 2Mo s N,Dolbow J,Belytschko T.A finite elementmethod for crack growth without remeshing[J].International Journal for Numerical Methods inEngineering,1999,46:131―150.
  • 3Melenk J M,Babu ka I.The partition of unity finiteelement method:Basic theory and application[J].Computer Methods in Applied Mechanics andEngineering,1996,139:289―314.
  • 4Mo s N,Belytschko T.Extended finite element methodfor cohesive crack growth[J].International Journal forNumerical Methods in Engineering,2002,69:813―833.
  • 5Goangseup Zi,Ted Belytschko.New crack-tip elementsfor XFEM and applications to cohesive cracks[J].International Journal for Numerical Methods inEngineering,2003,57:2221―2240.
  • 6Mariani S,Perego U.Extended finite element method forquasi-brittle fracture[J].International Journal forNumerical Methods in Engineering,2003,58(1):103―126.
  • 7Mergheim J,Kuhl E,Steinmann P.A finite elementmethod for the computational modelling of cohesivecracks[J].International Journal for Numerical Methodsin Engineering,2005,63(2):276―289.
  • 8Asferg J L,Poulsen P N,Nielsen L O.A consistent partlycracked XFEM element for cohesive crack growth[J].International Journal for Numerical Methods inEngineering,2007,72(4):464―485.
  • 9Hillerborg A,Modéer M,Peterson P E.Analysis of crackpropagation and crack growth in concrete by means offracture mechanics and finite elements[J].Cement andConcrete Research,1976,6:773―782.
  • 10方修君,金峰,王进廷.用扩展有限元方法模拟混凝土的复合型开裂过程[J].工程力学,2007,24(z1):46-52. 被引量:45

二级参考文献26

  • 1杨庆生,杨卫.界面裂纹的路径选择与数值模拟[J].力学学报,1997,29(3):355-358. 被引量:8
  • 2[1]Hillerborg A,Modéer M,Peterson P E.Analysis of crack propagation and crack growth in concrete by means of fracture mechanics and finite elements[J].Cem.Concr.Res.,1976,6:773~782.
  • 3[2]Ba(z)ant Z P.Crack band model for fracture of geomaterials[C].Proc.4th Int.Conf.on Numerical Methods in Geomechanics,Z.Eisenstein,ed.,Univ.of Alberta,Edmonton,1982,3:1137~1152.
  • 4[3]Jirásek M,Zimmermann T.Embedded crack model:I.basic formulation[J].International Journal for Numerical Methods in Engineering,2001,50:1269~1290.
  • 5[4]Belytschko T,Black T.Elastic crack growth in finite elements with minimal remeshing[J].Int.J.Numer.Methods Engrg.,1999,45:601~620.
  • 6[5]Moёs N,Dolbow J,Belytschko T.A finite element method for crack growth without remeshing[J].International Journal for Numerical Methods in Engineering,1999,46:131~150.
  • 7[6]Daux C,Moёs N,Dolbow J,Sukumar N,Belytschko T.Arbitrary branched and intersecting cracks with the extended finite element method[J].Int.J.Num.Methods in Eng.,2000,48:1741~1760.
  • 8[8]Alfano G,Crisfeld M A.Finite element interface models for the delamination analysis of laminated composites:mechanical and computational issues[J].International Journal for Numerical Methods in Engineering,2001,50:1701~1736.
  • 9[9]Planas J,Elices M,Guinea G V,Gómez F J,Cendón D A,Arbilla I.Generalizations and specializations of cohesive crack models[J].Engineering Fracture Mechanics,2003,70:1759~1776.
  • 10[10]Carol I,Ba(z)ant Z P,Prat P C,Microplane type constitutive models for distributed damage and localized cracking in concrete structures[C].In:Proc.Fracture Mechanics of Concrete Structures,Breckenridge,CO.Elsevier,1992:299~304.

共引文献110

同被引文献198

引证文献23

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部