期刊文献+

一种新的空间直方图相似性度量方法及其在目标跟踪中的应用 被引量:19

A New Spatiogram Similarity Measure Method and Its Application to Object Tracking
下载PDF
导出
摘要 在基于空间直方图的目标跟踪中,选择一种合适的度量两个空间直方图之间相似性的方法至关重要。该文提出一种新的空间直方图相似性度量方法。将空间直方图中的每个区间所对应像素的空间分布看作一个高斯分布,其均值和协方差矩阵为该区间内所有像素坐标的均值和协方差矩阵,然后用Jensen-Shannon Divergence(JSD)计算对应区间的空间分布相似度,而颜色特征的相似度采用具有强区分能力的直方图相交法来计算。理论和实验证明该文提出的相似性度量的稳定性好,区分能力强,其在静态图像上的整体性能优于已有度量方法,视频跟踪结果比已有方法更精确。 For spatiogram based object tracking,suitable similarity measure is critical.In this paper,a new spatiogram similarity measure is presented.The spatial distribution of the pixels corresponding to each bin is regarded as a Gaussian distribution,where the mean vector and covariance matrix are computed with all pixels belonging to the corresponding bin.Then,the similarity of two spatial distributions is computed with the Jensen-Shannon Divergence(JSD).The similarity of color feature is calculated by using histogram intersection,which is more discriminative than Bhattacharyya coefficient.Both theoretically and experimentally,the proposed measure is stable,and gives superior discriminative power than existing methods,and achieves promising performance in tracking object from single or sequence of images.
作者 姚志均
出处 《电子与信息学报》 EI CSCD 北大核心 2013年第7期1644-1649,共6页 Journal of Electronics & Information Technology
关键词 目标跟踪 空间直方图 Jensen-Shannon散度 高斯分布 粒子滤波 Object tracking Spatiogram Jensen-Shannon Divergence(JSD) Gaussian distribution Particle filter
  • 相关文献

参考文献17

  • 1Comaniciu D, Ramesh V, and Meer P. Kernel-based object tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(5): 564-577.
  • 2Dunne P and Matuszewski B. Choice of similarity measure, likelihood function and parameters for histogram based particle filter tracking in CCTV grey scale video].I], Image and Vision Computing, 2011, 29(2/3): 178-189.
  • 3Gordon N, Arulampalam M S, Maskell S, ei al .. A tutorial on particle filters for online non-linear /nongaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188.
  • 4Nummiaro K, Koller-Meier E, and Van Gool L. An adaptive color-based particle filter[J]. Image and Vision Computing, 2003, 21(1): 99-110.
  • 5Elgammal A, Duraiswami R, and Davis L S. Probabilistic tracking inJoint feature-spatial spaces[C]. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, 2003: 781-788.
  • 6Wang H, Suter D, Schindler K, et al.. Adaptive object tracking based on an effective appearance filter[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(9): 1661-1667.
  • 7Birchfield STand Rangarajan S. Spatiograms versus histograms for region-based tracking[C]. Proceedings ofIEEE Conference on Computer Vision and Pattern Recognition. San Diego, 2005: 1158-1163.
  • 8Huang C, Li Y, Ai H, et al .. Robust head tracking with particles based on multiple cues[C]. Proceedings of ECCV Workshop on HCI, Graz, 2006: 1-11.
  • 9O'Connor N E, O'Conaire C, and Smeaton A. Thermo-visual feature fusion for object tracking using multiple spatiogram trackers[J]. Machine Vision and Application, 2008, 19(5/6): 483-494.
  • 10Smeaton A F, O'Conaire C, and O'Connor N E. An improved spatiogram similarity measure for robust object localization[C]. Proceedings of ICASSP, Honolulu, 2007: 1067-1072-.

二级参考文献4

共引文献6

同被引文献158

引证文献19

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部