摘要
为了动态、准确、高效地描述用户的访问行为,实现对不同应用层分布式拒绝服务(Application-layerDistributed Denial of Service,App-DDoS)攻击行为的透明检测,该文提出基于最大频繁序列模式挖掘的ADA_MFSP(App-DDoS Detection Algorithm based on Maximal Frequent Sequential Pattern mining)检测模型。该模型在对正常Web访问序列数据库(Web Access Sequence Database,WASD)及待检测WASD进行最大频繁序列模式挖掘的基础上,引入序列比对平均异常度,联合浏览时间平均异常度、请求循环平均异常度等有效检测属性,最终实现攻击行为的异常检测。实验证明:ADA_MFSP模型不仅能有效检测各类App-DDoS攻击,且有良好的检测灵敏度。
In order to describe the user's access behavior dynamically,efficiently and accurately,a novel detection model for Application-layer Distributed Denial of Service(App-DDoS) attack based on maximal frequent sequential pattern mining is proposed,named App-DDoS Detection Algorithm based on Maximal Frequent Sequential Pattern mining(ADA_MFSP).After mining maximal frequent sequential patterns of trained and detected Web Access Sequence Database(WASD),the model introduces sequence alignment,view time and request circulation abnormality to describe the behaviour of App-DDoS attacks,finally achieves the purpose of attack detection.It is proved with experiments that the ADA_MFSP model can not only detect kinds of App-DDoS attacks,but also has good detection sensitivity.
出处
《电子与信息学报》
EI
CSCD
北大核心
2013年第7期1739-1745,共7页
Journal of Electronics & Information Technology
基金
国家科技支撑计划(2011BAH19B01)
国家高技术研究发展计划(2011AA01A103)资助课题
关键词
应用层分布式拒绝服务攻击
检测模型
频繁序列模式挖掘
异常度
Application-layer Distributed Denial of Service(App-DDoS) attack
Detection model
Frequent sequential pattern mining
Abnormality