期刊文献+

一类中立型二维神经网络模型的振动性

Oscillation of a class of 2-dimensional neutral neural network model
下载PDF
导出
摘要 在无自反馈的时滞神经网络模型中加入中立行为,得到一类无自反馈的中立型二维时滞神经网络。从方程平衡解的唯一性、不稳定性以及全局有界性三个方面加以研究,结合Chafee的极限环定理,给出该系统的解的振动性的存在性条件,在一定程度上揭示了该中立型神经网络模型的更为丰富的动力学行为。数值模拟验证了结论的正确性。 By adding neutral behavior into the neural network model with delay, a kind of 2-dimensional neutral neural network model without self-feedback is obtained. The uniqueness, instability and global boundedness of equilibrium solution are investigated. By using Chafee' s criterion, the existence of oscillation of solutions is obtained and rich dynamical behavior is revealed. Finally, numerical simulations are performed to support the analytic resuits.
出处 《黑龙江大学自然科学学报》 CAS 北大核心 2013年第3期314-317,共4页 Journal of Natural Science of Heilongjiang University
基金 中央高校基本科研业务费专项资金资助项目(DL11AB02)
关键词 中立型 神经网络 振动性 neutral neural oscillation
  • 相关文献

参考文献10

  • 1GROVE E A, KULENOVI MRS, LADAS G. Sufficient conditions for oscillation and nonoscillation of neutral equations[ J]. Differential Equa-tions, 1987,68 (3) : 373 -382.
  • 2ZHANG Shao-yan, WANG Qi-ru. Oscillation of second-order nonlinear neutral dynamic equations on time scales[ J]. Applied Mathematics andComputation, 2010, 216( 10) : 2837 -2848.
  • 3屈英,孙博.三阶非线性中立型微分方程的振动性[J].数学实践与认识,2011,41(6):244 - 248.
  • 4张全信,高丽,俞元洪.偶阶半线性中立型分布时滞微分方程的振动性[J].应用数学学报,2011,34(5):895-905. 被引量:14
  • 5CHEN Yu-ming, WU Jian-hong. Slowly oscillating periodic solutions for a delayed frustrated network of two neurons[ J]. Journal of MathematicalAnalysis and Applications, 2001,259( 1): 188 -208.
  • 6WEI Jun-jie, RUAN Shi-gui. Stability and bifurcation in a neural network model with two delays[ J]. Physica D: Nonlinear Phenomena, 1999,130(3): 255 -272.
  • 7FARIA T. On a planar system modelling a neuron network with memory[J]. Differential Equations, 2000, 168(1) : 129 -149.
  • 8WEI Jun-jie, VELARDE M, MAKAROV V. Oscillatory phenomena and stability of periodic solutions in a simple neural network with delay [J].Nonlinear Phenomena in Complex Systems, 2002, 5(4) : 407 - 417.
  • 9魏俊杰,张春蕊,李秀玲.具时滞的二维神经网络模型的分支[J].应用数学和力学,2005,26(2):193-200. 被引量:10
  • 10CHAFEE N. A bifurcation problem for a functional differential equation of finitely retarded type[ J]. Journal of Mathematical Analysis and Appli-cations ,1971, 35: 312 -348.

二级参考文献23

  • 1Wintner A. A Criterion of Oscillatory Stability. Quart. Appl. Math., 1949, 7:115-117.
  • 2Kanenev I V. An Integral Criterion for Oscillation of Linear Differential Equations of Second Order. Math. Zametki, 1978, 23:249-251.
  • 3Li H J, Yeh C C. An Integral Criterion for Oscillation of Nonlinear Differential Equations. Math. Japonica, 1995, 41:185-188.
  • 4Philos Ch G. Oscillation Theorems for Linear Differential Equations of Second Order. Arch. Math., 1989, 53:482 -492.
  • 5Li H J. Oscillation Criteria for Half-linear Second Order Differential Equations. Hiroshima Math. J., 1995, 25:571-583.
  • 6Wang P G, Teo K L, Liu Y Q. Oscillation Properties for Even order Neutral Equations with Distributed Deviating Arguments. J. Comput. Appl. Math., 2005, 182:290-303.
  • 7Agarwal R P, Grace S R, O'Regan D. Oscillation Criteria for Certain rtth Order Differential Equations with Deviating Arguments. J. Math. Anal. Appl., 2001, 262:601-622.
  • 8Dosly O, Lomtatidze A. Oscillation and Nonoscillation Criteria for Half-linear Second Order Differ- ential Equations. Hiroshima Math. J., 2006, 36:203-219.
  • 9Hsu H B, Yeh C C. Oscillation Theorems for Second-order Half-linear Differential Equations. AppL Math. Lett., 1999, 9:71-77.
  • 10Wang Q R. Oscillation and Asymptotics for Second-order Half-linear Differential Equations. Appl. Math. Comput,, 2001, 122:253-266.

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部