期刊文献+

基于Contourlet变换和不变矩的纹理特征提取与分类 被引量:1

Texture Feature Extraction and Classification on Contourlet Transform and Invariant Moments
下载PDF
导出
摘要 本文提出了一种基于contourlet变换和不变矩的特征提取方法.它首先对图像进行contourlet变换用以多尺度多方向分析,然后提取变换后各子带系数的统计特性和不变矩特征,以构造特征矢量,在此基础上,根据不同子带特征分类能力的不同,对各子带数据的离散程度进行加权处理,为分类能力强的特征量赋予较大的权值,得到新的特征向量,最后利用RBF神经网络作为分类器进行分类.实验结果证明了该方法的有效性和良好的分类能力. This paper proposed a feature extraction method based on the contourlet transform and Invariant moments.First it should be transformed using contourlet transform for analysis with multi scale and multi directional,and then extract the statistical characteristics and moment invariant features of the subband coefficient,constructed as feature vector.The feature vector is weighted according to the degrees of classificion,and the feature with higher classification ability has bigger weight,which are calculated to get some new feature vectors.At last,classify the extracted feature vectors by RBF Neural network which works as a classifier.The experimental results proved the effectiveness of the methods and the better classification ability.
出处 《微电子学与计算机》 CSCD 北大核心 2013年第7期124-127,132,共5页 Microelectronics & Computer
基金 国家自然科学基金(60973094)
关键词 CONTOURLET变换 不变矩 特征加权 RBF神经网络 提取分类 contourlet transform invariant moments feature weighted RBF neural network extraction and classification
  • 相关文献

参考文献8

二级参考文献43

  • 1MULLER H, MICHOUX N, BANDON D, et al. A review of content-based image retrieval systems in medical applications-clinical benefits and future directions [ J ]. International Journal of Medical Informatics, 2004, 73 (1) : 1-23.
  • 2SHYU C, BRODLEY C, KAK A. A physician-in-the- loop content-based retrieval system for HRCT image databases[ J ]. Computer Vision and Image Understanding, 1999, 75(1-2) : 111-132.
  • 3MALLAT S. A theory, for multiresolution signal decomposition: The wavelet representation [ J ].IEEE Trans. on PAMI, 1988, 11(7) : 674-693.
  • 4DO M N, VETTERH M. The Contourlet transform: An efficient directional multiresolution image representation [ J]. IEEE Trans. on Image Processing, 2005, 14(12) : 2091-2106.
  • 5CUNHA A L D, ZHOU J P, DO M N. The nonsubsampled contourlet transform: Theory, design, and applications[ J]. IEEE Trans. on Image Processing, 2006, 15 (10) : 3089-3101.
  • 6HU M-K. Visual pattern recognition by moment invariants [J]. IEEE Trans. on Information Theory, 1962, 8(2) : 179-187.
  • 7BURT P J, ADELSON E H. The Laplacian pyramid as a compact image code [ J]. IEEE Trans. on Communications, 1983, 31 (4) : 532-540.
  • 8DO M N. Directional multiresolution image representations[ D]. Lausanne: Swiss Federal Institute of Technology, 2001.
  • 9TEAGUE M-R. Image analysis via the general theory of moments[ J]. J. Opt. Soc. Am. ,1980, 70(8) : 920-930.
  • 10da CUNHA A L, ZHOU J, DO M N. Nonsubsampled contourlet transform: Filter design and applications in denoising [ EB/OL]. [2009 -04 -10]. http://www, ifp. illinois, edu/- minhdo/publi- cations/nsctdenoise_icip, pdf.

共引文献27

同被引文献4

  • 1李玉芝.图像检索的方法介绍.[J].NEW HORIZON,2011(1).
  • 2Guang-Bin Huang,Qin-Yu Zhu,Chee-Kheong Siew,Extreme learning machine:a new learning scheme of feedforward neural networks[J].International Joint Conference on Neural Networks(IJCNN 2004),July 25-29,Budapest,Hungary:2004,985-990.
  • 3Y.Wang,F.Cao,Y.Yuan.A study on effectiveness of extreme learning machine[J].Neurocomputing,2011,74(16):2483-2490.
  • 4F.Xiang,H.Yong,S.Dandan,Z.Jiexian.An Image Retrieval Method Based on Hu Invariant Moment and Improved Annular Histogram[J].Electronics and Electrical Engineering,2014,20(4).

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部