期刊文献+

升温速率对氨基酸裂解生成含氮气体的影响研究 被引量:12

Effect of heating rate on the formation of nitrogenous gases from the pyrolysis of amino acids
下载PDF
导出
摘要 为进一步阐明卷烟烟气中含氮有害气体的形成机理,以甘氨酸、天冬酰胺和天冬氨酸为研究对象,采用TG-FTIR技术对其在不同升温速率下热解时含氮气体的释放特性进行了研究。结果表明:(1)随着升温速率增加,三种氨基酸TG和DTG曲线各个失重阶段的起始和终止温度向高温侧移动;(2)氨基酸结构不同,HCN、NH3、HNCO的生成温度及生成量不同;(3)增加升温速率,三种氨基酸热解过程中HCN、NH3、HNCO的生成量均增加,但三种氨基酸氮转化的选择性不尽相同。甘氨酸和天冬酰胺热解过程中氮主要转化为NH3,而天冬氨酸在低升温速率下热解时,氮主要转化为HCN和NH3,在高升温速率下主要生成HNCO。 In order to elucidate the formation mechanisms of harmful nitrogenous gases further, the formation behavior of nitrogenous gases from pyrolysis of three typical amino acids including glycine, asparagine and aspartic acid at different heating rates were stud- ied by TG-FTIIL The results showed that: 1 ) As heating rate increased, the TG and DTG curve of the three amino acids shifted to high temperature zone. 2) The distinctive structures of amino acids contributed to different formation behavior of nitrogenous gaseous products. 3 )The releasing behaviors of nitrogenous gases during pyrolysis of the three samples were similar. The formation of HCN, NH3 and HNCO were favored at high heating rate. But the N-transfer behavior of the three amino acids at different heating rates were different. The glycine-N and asparagine-N converted mainly into NH3, while the aspartie acid-N converted mainly into HCN and NH3 at low heating rate, and mainly into HNCO at high heating rate.
出处 《化学研究与应用》 CAS CSCD 北大核心 2013年第7期981-986,共6页 Chemical Research and Application
基金 国家烟草专卖局科技重大专项(110200902002)资助
关键词 氨基酸 热解 升温速率 含氮气体 热重-红外联用 amino acid pyrolysis heating rate nitrogenous gas TG-FTIR
  • 相关文献

参考文献14

  • 1谢剑平,刘惠民,朱茂祥,钟科军,戴亚,杜文,谢复炜,缪明明,邓家云,聂聪,邵学广,胡清源,姚小军,李忠,张晓兵.卷烟烟气危害性指数研究[J].烟草科技,2009,42(2):5-15. 被引量:312
  • 2Hansson K M, Samuelsson J, Tullin C, et al. Formation ofHNCO, HCN, and NH3 from the pyrolysis of bark and ni-trogen-containing model compounds[ J]. Combust Flame,2004,137(3) :265-277.
  • 3苏涛.大气中氮氧化物的形成及防治[J].科学咨询,2009(11):43-44. 被引量:10
  • 4Senneca 0, Chirone R, Salatino P, et al. Composition of thegaseous products for pyrolysis of tobacco under inert andoxidative conditions [ J ]. J Anal Appl Pyrol,2007,79 ( 1-2) :234-243.
  • 5StubenbergerG,Scharler R,Zahirovic S,et al. Experimen-tal investigation of nitrogen species release from differentsolid biomass fuels as a basis for release models[ J] . Fuel,2008,87(6) :793-806.
  • 6Johnson W R,Kang J C. Mechanisms of hydrogen cyanideformation from the pyrolysis of amino acids and relatedcompounds[J]./Org Ocm,1971,36( 1) :189-192.
  • 7Haidar N F, Patterson J M,Moors M,et al. Effects of struc-ture on pyrolysis gases from artiino acids[ J] . J Agric FoodOcm,1981,29(l) :163-165.
  • 8SimmondsP G,Medley E E,Ratcliff Jr MA,et al. Thermaldecomposition of aliphatic monoaminomonocarboxylic acids[J].Anal Oem,1972,44(12) :2060-2066.
  • 9Jie L, Yuwen L, Jingyan S, et al. The investigation ofthermal decomposition pathways of phenylalanine andtyrosine by TG-FTIR [ J ]. Thermochim Acta,2008,467(1-2) :20-29.
  • 10Ratcliff Jr M A,Medley E E, Simmonds P G. Pyrolysis ofamino acids. Mechanistic considerations [ J ]. J OrgChem,1974,39(11) : 1481-1490.

二级参考文献38

共引文献342

同被引文献165

引证文献12

二级引证文献44

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部